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Conceptual and Procedural Approaches to Problem-Solving

Yudariah Binte Mohammad Yusof

Department of Mathematics
Universiti Teknologi Malaysia
Locked Bag No 791, 80990 Johor Bahru
Malaysia

David 11111

Mathematics Education Research Centre
University of Warwick

Coventry CV4 7AL
United Kingdom

The introduction of problem-solving strategies has been shown to change students'
attitudes to mathematics in ways that professors consider desirable. But does it
change their overall strategies for doing mathematics? This paper reports data
taken from students solving problems co-operatively who exhibited an overall
improvement in attitudes (see Mohd Yusof & Tall, 1995). It indicates that some
students who had said that "mathematics makes sense" approached problems in
an open, creative way but that some lower attaining students who hadstated that
"mathematics does not make sense" treated problem-solving techniques as a
new sequence of routine procedures.

There is a growing awareness that many university students are successful in learning how
to carry out routine procedures to pass examinations,yet may not encounter experiences to
encourage them to be creative and reflective. They are often given lectures that consist of
theorems and proofs which do not encourage them to think mathematically. Problem-solving
is seen as just a skill to be acquired. Studies have shown that the traditional approach is
failing the majority of the students, not only the average students but more disturbingly
also successful students. Students find great difficulties in constructing their own
mathematical understanding (Davis & Vinner, 1986; Martin & Wheeler, 1987; Sierpinska,
1988; Eisenberg, 1991; Williams, 1991) and have a narrow view of the mathematics that
shapes their mathematical behaviour (Schoenfeld, 1989; Vinner, 1994). Such difficulties
were observed among Malaysian students (Mohd Yusof & Abd. Hamid, 1990; Razali &
Tall, 1993). Nevertheless, research findings indicate that thinking mathematically or
problem-solving can be taught with some success. For instance, Mason & Davis (1987)
explored how people can develop their mathematical thinking, learning, and teaching by
reflecting on their own experience. They argued that the technique of using meaningful
vocabulary can help students to become more reflective and effective in mathematical
learning. It was observed that students not only notice the use of the vocabulary and advice
from tutors, but also remember it when the same language pattern (e.g. specialising,
generalising, colloquial comments such as "What do I want?" etc.) was repeatedly used
and their attention was explicitly drawn to it. Mohd Yusof & Tall (1995) reported that a
course which provides students with experiences of sharing problem-solving activities has
the effect of changing students' attitudes. Prior to the course the students generally regarded
mathematics as abstract facts and procedures to be committed to memory, and had a range
of negative attitudes such as fear of new problems, being unwilling to try new approaches,
and giving up all too easily. After the course, students' attitudes changed in a positive

4 - 3
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direction. In this paper we investigate whether this change in attitude is accompanied by
successful change in strategies for solving problems.

To investigate the manner in which students attack a problem, six groups were selected and
given a problem which was relatively easy to state but did not have a straightforward
algorithmic solution. The students taking part in the research were a mixture of third, fourth
and fifth year undergraduates aged 18 to 21 in SSI (Industrial Science, majoring in Math-
ematics) and SPK (Computer Education), covering the full honours degree range. They
had responded to a questionnaire in which they had been asked to indicate whether math-
ematics "makes sense" to them. Half the students agreed and half disagreed. Interestingly,
the two groups had almost identical distributions of achievement in their previous year 's
examination. (Table 1.)

Degree Classification

I II -I 11-2 III P F
Group S 3 1 1 7 1 0 0
Group N 3 13 5 1 0 0

Table 1 : Students for whom mathematics makes sense (Group S) and does not (Group N)

During the problem-solving course they had been encouraged to work in self-selected
groups of three or four students. Several groups (by chance) consisted either entirely of
students who declared that mathematics made sense (S) or that it did not (N). From these,
three groups were chosen with all students in group S and three groups with students in
group N. (Table 2.)

group 1 (S)

group 2 (S)

group 3 (S)

group 4 (N)

group 5 (N)

group 6 (N)

Students Course Degree
Classification

Gender Maths
"makes sense"

Sam 5 SPK 11-1 M S
Abel 4 SPK 11-2 M S
Henry 4 SPK I1-1 M S
Sue 4 SPK I F S
Teresa 4 SPK 11-1 F S
Sasha 5 SPK 1I-1 F S
Rob 3 SSI 11-1 M S
Kline 3 SSI II-1 M S
Ian 3 SSI I M S
Hanna 5 SPK 11 -1 F N
Katy 5 SPK I F N
Terry 5 SPK I M N
Bob 5 SPK 11-2 M N
Yvonne 5 SPK 11-1 F N
Alma 4 SPK II-1 F N
Pauline 5 SPK 11-2 F N
Matt 5 SPK 11-1 M N
Al 4 SPK 11-2 M N
Holmes 5 SPK III M N
Ricky 5 SPK 11-2 M N

Table 2 : The 6 groups of students selected for interview
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Each group was invited at an appointed time for the session that lasted 40 minutes. The
first 10 minutes served as a relaxing phase whereby the students were simply asked to talk
about their mathematical experience at the university. For the next 30 minutes, they were
given a problem to work on, as follows:

A man lost on the Nullarbor Plain in Australia hears a train whistle due west of him. He cannot
see the train but he knows that it runs on a very long, very straight track. His only chance to
avoid perishing from thirst is to reach the track before the train has passed. Assuming that he
and the train both travel at constant speeds, in which direction should he walk?

Mason, Burton & Stacey, 1982, p. 183.

After being presented with the problem the students were left entirely on their own and
their attempts in solving it were observed without any intervention. The interview then
focused on the students' interpretation of their problem-solving experience.

During the course the students had been encouraged to view their activities in three phases
entry, attack and review, with appropriate activities for each (Mason et al, 1982). The

purpose of the research was to see if the students used this structure as a framework for
meaningful problem-solving.

The interview data provided some evidence of qualitatively different thinking between the
various groups. For instance, the following excerpt from the beginning of the solution
process when the students were in the "entry phase" indicates differences in mathematical
understanding.

Students in group 1 spent a few moments establishing the meaning of "constant speed" and
finally agreed it mean that both train and man were moving at different speeds.

ABEL: Constant speed ...
HENRY: The speed of the train must be the same.
SAM: It is not the same.
HENRY: Constant.
SAM: Constant means it does not increase or decrease.
ABEL: ... the train travels say at 40 mph, Ali [the man] 4 mph. Ali will always travel at 4, the train
always at 40. That is constant speed.
SAM: I agree.
HENRY: Hmm
ABEL: It is not the same speed but constant speed. Ali can be faster than the train ...
SAM: Ali and the train do not move the same, not at the same speed. But at their respective speeds
... the same speed all the time. group 1 (S)

In contrast, group 6 students started from the misconception that constant speed meant that
both man and train move at same speed. They quickly agreed with the meaning and no
further reference was made to their interpretation of 'constant speed' until the end.

MATT:... constant speed.
AL: It means the same I think.
HOLMES: Constant speed ..., it's the same.
MATT: Uniform ...
AL: It means the man moves with the train at the same speed. Now OK ... group 6 (N)

4 - 5
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During the problem-solving, it could be seen that three of the six groups (the lower attain-
ing N groups 5 and 6 and the younger S group 3) followed the techniques taught in the
problem-solving course very rigidly. Of these three, the two N groups seemed to be doing
it more religiously than the S group. They were more concerned to cover each phase in a
sequence and could be seen to be working procedurally throughout. They interpreted the
problem-solving technique as a procedure that they must follow step by step; it was as if
they believed that precision in following each phase would guarantee them a solution.
Most of their time was spent looking for formulas that could be used.

PAULINE: We have already understood the question. We have introduced what we want, what we
know. We have done that. OK now we can enter the attack [phase].
YVONNE: What is the formula?
BOB: Speed times time.
YVONNE: The time is the same. The speed is ...
ALMA: We need to define speed first.
BOB: I should remember how to do
this. ... Oh yes! speed is distance di-
vided by time.
PAULINE: Now the distance, we don't
know how much, tight? The distance
between the man and the train.
BOB: Let us assume the speed of the
train is 100, the man 10. ...
ALMA: OK we did some specialising

group 5 (N)
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MATT: So, first we go to the entry phase.
AL: OK. That is what we know. Now what we want is the direction in which the man should go.
MATT: Anybody feel stuck or anything. The question is clear isn't it? ...
RICKY: The concept of intersection. That is what we can say.
HOLMES: The intersection point is the place the man has to go.
MATT: OK, now we go to the Attack phase. group 6 (N)

ROB: We are stuck at this point.
KLINE: Stuck. OK. write down we are stuck.
IAN: Let's go back to what we want. w hat we want is the direction in which the man should walk.
Direction, the man should go ... west, east
ROB: We are confident our assumption is correct so far. OK now we enter the gnarl phase.

group 3 (S)

In none of these beginnings of solutions have the students thought in a broader conceptual
fashion, for instance to consider the direction of the train, or to draw a diagram. The other
groups were more involved in considering plausible ways to solve the problem by creating
their own solution method.

SAM: OK, so we conjecture that the train is moving towards the west. That is according to your
understanding. But I have another suggestion. To me...we go back to entry phase OK? ...
ABEL: OK, I got it.

14 4 6



HENRY: No, no, no. Hang on. The train is mov-
ing to the west.... But why should the man walk
in this direction [pointing to the top diagram)?
Why do you say that?
SAM: It is like this. Now this is just my idea....
Say the man is here [drawing the next diagram]
... So he cannot go this way, otherwise he will be
moving parallel to the track and may never reach
the train.
HENRY: So according to what you say, the
direction the man should walk is this one, to the
north. OK, we can conjecture that.
ABEL: We have now answered the question. Now
we want to justify whether it [the conjecture] is
correct or not. group I (S)

In groups 2 (S) and 4 (N) one of the students
thinks the train is moving west but others cor-
rect her and widen the issue:

TERESA: ...The train is moving to the west.
SASHA: Where does the train come from?
SUE: That is the problem. That is what we want
to find out, it relates to the direction we
want to go.
SASHA: Hmm ...We are stuck!
SUE If we know from where [the train is com-
ing], we can find out where we want to go.
TERESA: Suppose we look at it this way. First
say the man is here [pointing to a point on her
paper]. Now we define where is his east, his west

group 2 (S)

HANNA: We are wasting our time ... What I know, the question says, the train is moving towards
the west. So the man must go towards the west as well.
TERRY: No! The question does not say the train is going west. But he heard [the whistle) due west
of him.
KATY: Yeah, that is my understanding too. The
man heard the train whistle due west of him. But
this does not mean that the train is moving
towards the west. We cannot come to that
conclusion.
TERRY: How do we know from the whistle that
the train is moving west or east... What is your
reasoning? ...
TERRY: OK, that's it. So we conjecture that the
man should walk to the north. I think we have a
solution to the problem. But we are not finished
yet, we need to justify this conjecture first.

group 4 (N)
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Four of the six groups (the three S groups 1, 2, 3 and the higher attaining N group 4) gave
some evidence that they are able to carry out the mathematical processes to some extent.
They show that they are capable of making judgements on the content and in making
mathematical decisions for themselves. They also question the meaning of the task.

The problem is very challenging. It does not require a specific formula or procedure that you have
to apply to solve it. It is quite difficult. We got an idea what the answer is but to prove it is the
hardest part. group I (S)

We only managed to understand the question better towards the end of the discussion time. But I
think we can solve the problem if we have more time. It is not difficult, but to generalise and to
prove is very difficult ... We will keep on thinking about it until we get the answer. group 2 (S)

The problems in the problem-solving course are interesting. Like this one. We have to think, work
out what we want, what we do know before we actually work out what we don't know. ... The
course is beneficial. It makes us sit down and see where to start. group 3 (S)

However, the other two N groups (5 and 6) have the notion that mathematical problems
consist of direct application of facts and procedures. Their lower attainments on their ex-
aminations suggests they have less secure knowledge to bring to the solution process. Thus
they are in an interesting position where they have built up their confidence to tackle prob-
lems and yet they find the problems very difficult.

We tried to generate a few possible ideas. But we felt a bit put off because we couldn't recall the
formulas. ... The problems are totally different from those in the maths course. In maths we
always know what method to use. Here we have to find it out for ourselves. ... I think we have
more confidence now. Before the [problem-solving] course we probably would have given up
very easily. group 5 (N)

We found it [the problem] very difficult. We are unsure of which formulas or methods to use. Even
if we got a solution, we don't know whether our solution is right. ... Unlike problems in the
problem-solving course, most of the problems in the maths course are simply applications of a
ready rule. There is always a definite answer at the end. group 6 (N)

Discussion

Although none of the groups could provide a complete solution to the problem within the
time limit, they were at least able to tackle the problem to make a start. All the student
groups were very willing to tackle the problem without any overt sign of anxiety. Even
though the problem remained unfinished, all three S groups and the higher attaining N
group 4 considered that they could solve the problem given more time, (although based on
their responses this may involve a lot more effort than they may have thought). Meanwhile,
the other two N groups were seeking formulae appropriate for a solution and using the
overall strategy of problem-solving as a procedure to attack the problem. Their response to
problem-solving shows the same procedural format as their approach to traditional
mathematics problems.

Byers & Erlwanger (1985) note that memory plays an important role in the understanding
of mathematics. However, they suggest that it is what is remembered and how it is
remembered that distinguishes those who understand from those who do not. Mathematical
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concepts are abstract entities requiring mental effort to construct relationships between the
ideas. The students involved in this research have previously followed courses which place
great demands on success in learning procedures and applying them to solve related problems
so that they perceive mathematics more as a fixed body of knowledge to be learnt.

The problem-solving course has had various positive outcomes, for instance, the students
have experienced the fact that not everything they do has to be immediately correct. If they
were to fear making erroneous conjectures, the may not be able to solve any real problems.
Although it is essential to get the right answer by the end of the process, it is evident that
after the course, the students see that it is how they obtain an answer which is more impor-
tant; making the intellectual journey to find the right methods and correct reasoning. It is
possible to conjecture that the students' success in problem-solving during the course was
sufficient to give them a sense of well being.

Although the students show little emotional reactions when solving an unexpected prob-
lem, opinions expressed in an attitudinal questionnaire suggest that group 2 have a positive
attitude before and after the course. The majority of those in groups 1, 3 and 4 became
more positively inclined during the course. Group 5 and 6's negative attitudes lessened
during the course. The diminishing of fear and anxiety may be related to Skemp' s (1979)
idea of avoiding failure, and a perceived increase in confidence during the course involves
seeing the task more as a goal to be achieved. In the case of all these students, there was a
general sense of satisfaction expressed at the end of the problem-solving course. However ,

from the evidence of these investigations, it is clear that, for some, doing things procedurally
is not an anti-goal for them as suggested by Skemp. To some of the students it is a goal, but
it is a less suitable kind of goal.

Summary

The students involved in this research have long since learned that what matters most is to
be able to carry out the procedures to do the mathematics. During the problem-solving
course, although the majority of students showed that they are capable of carrying out the
various processes of mathematical thinking and engage actively in problem-solving, the
interviews emphasise that there are differences in the quality of the students' thinking. For
instance for some lower attaining students for whom mathematics does not make sense,
when faced with a problem appear to be more concerned about recalling and applying
learned techniques to solve the problem rather than looking for insights, methods and rea-
sons. Perhaps their contextual understanding of mathematical concepts is limited. Thus
they lack confidence in carrying out the mathematical performance. Their reaction to the
given mathematical problem gives an indication that they see problem-solving as just another
procedure. While problem-solving, their emphasis is on applying learned techniques or
ready rules to the task. They were using a procedural method and were not truly doing
problem-solving. Their recorded discussion gave an indication of the way they do math-
ematics in a procedural and non-conceptual way. After the problem-solving course, the
tendency to lay emphasis on procedural aspects remains.
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TEACHING DIFFERENTIAL EQUATIONS TO CHEMISTRY AND
BIOLOGY STUDENTS: AN OVERVIEW ON METHODOLOGY OF

QUALITATIVE RESEARCH. A CASE STUDY.
Mar Moreno & Carmen Azcarate

Departamento de Diclactica de las Matematicas y Ciencias Experimentales
Universidad Aut6noma de Barcelona

ABSTRACT: intending to quest about the conceptions math teachers hold about how
to teach Differential Equations to chemistry and biology students, we have devised a
research tool which allows us to derive relevant information. We use different means
to collect the adequate data related to the qualitative research, targeting the
exploration of what teachers "say they do" and what "they do and would like to do".
The use of concept maps and a questionnaire, along with a recorded interview, has
revealed itself as an accurate means for the appropriate interpretation and analysis
of data, as shown in the case study we hereby include.

1 - Introduction
Concern about the teaching of advanced level mathematics and Artigue's (1989)
studies on the learning of Differential Equations (D.E.) by students of Physics has
motivated the interest in knowing and further exploring certain aspects of the
teaching of mathematics in experimental schools, where both the discourse and the
receiver of it merit a singular importance.

Our first suspicion was that mathematical materials taught during the initial
undergraduate courses, did no differ substantially despite the various technical
and scientific background of the students. Consequently, our first inquest on this
field unveiled that no specific mathematical discourse existed for biologists and
that the only variations, within the same mathematical contents taught in other
schools, were based on the assessment level required. From this evidence, we
established the research hereby (Moreno, 1995), which has allowed us to carry
out an analysis and a deep reflection on some of the aspects of D.E. teaching in
experimental science schools, keeping always in mind a math teacher's
perspective.

D.E. make a segment of mathematics which has both historically and socially
activated the interest among experts and profanes. History reminds us how
problems in the area of Physics and Geometry acted as the propelling engine for
D.E. to develop. Additionally, D.E. are highly interdisciplinary and their
applicability outside the strict mathematical domains suggests interrogations of
heterogeneous essence.

In view of what has so far been stated and taking into account the exploratory
character of this study, we did no pre-establish any research hypothesis, although



we actually selected some interest focus over which we wanted to articulate our
scrutiny:

i) examine into the concept images educators have about teaching D.E. to
experimental science students.

ii) discern and unveil different obstacles and difficulties for the "teaching
transposition" from the "savoir savant" to the "savoir a enseigner" (Chevallard,
1991)

2 - Theoretical Framework
The theoretical basis for this study lays on certain mutually complementing
cognition, teaching and pedagogical aspects, so as to build up an explanation
model accounting for the observed, discerned and unveiled facts. So, we have
given especial emphasis on the notion of "concept image" as developed by Tall
and Vinner (1981), later re-elaborated and variegated by Vinner and Dreyfus
(1989), Dreyfus (1990) and proved useful by Azcarate (1990) through her
research on the notions of straight line gradient of derivative; we have assigned
due relevance to the links between existent concept images and the representation
and abstraction processes which underpin cognitive growth: Tall (1994, 1994a,
1994b, 1995), Dreyfus (1994) and Sfard (1991, 1994).

Other features have been taken into account which refer to teachers: attitudes and
beliefs about the various elements involved in the education system, elements in
decision-making, in planing and teaching style.

3 - Research methodology
The main interest of this report lies in this section. Considering the fact that the
evidence from which we have reflected and drawn our conclusions comes from
teachers' views and opinions, we decided to use various means for data gathering,
in view to "validating" the information each of them would provide (Miles &
Hubermann, 1987).

Participants in this study are four mathematicians, teaching staff in Mathematics
Faculties who carry their teaching pursuit in chemistry or biology faculties of two
different Spanish Universities. Because of their professional pathway and of their
teaching demands, all of them have been teaching D.E. subjects for years, so they
are fully and deeply acquainted with the topic.

The means for data gathering drawn up for all four sample teachers were:

- A concept map (C.M.) of the teachers conceptions about how to teach D.E. to
chemistry and/or biology students.

- A questionnaire with four issues. Each issue had some open and closed questions
about concepts and procedure viewpoints for the resolution of particular D.E.;
additionally, some of those questions referred to various methodological facets
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of their teaching. One of the questions in particular presented two different
response solutions by two different students to a modeling problem; the teachers
were asked to give their views on these two ways of solving the problem and
about the concept and pedagogical aftermaths implied in them.

Additionally, various work materials provided by each teacher were available. All
those work instruments were glued by means of a recorded interview, about one
hour and a half long.

The purpose of the C.M. was to: gather information about the teachers' cognitive
models on D.E. training, and try to grasp the significance and knowledge
structure the teacher conveys to students. The purpose of the questionnaire was to:
understand the teachers' view about particular concept and procedure aspects of
the subject-matter, in itself, and as a complement to the concept map. The purpose
of the interview was to: smooth up and clarify certain features both from the map
and from the questionnaire which would not come up distinctly enough, otherwise
risking an inaccurate interpretation of the gathered data.

4 - Analysis of research tools
4.1 - General analysis
Analyzing the data was done keeping the recorded interview as a reference point;
thus, an analysis of the "concept map for every teacher" was carried on based on
"their recorded explanations". In order to analyze the "questionnaire" we
proceeded on "a question at a time" base and we relied on the recorded interview
hoping that certain nuances not clear enough in the responses would burst up.

Finally, we tried to perform an "overall analysis" aiming at a consolidation of
every teacher's features coming from all the sources available for us. This
analysis ended up being very fruitful and plenty of particulars.

4.2 - Individual analysis
a) Concept map analysis

Keeping in mind Novak and Gowin (1988), we devised our own qualitative
analysis tool. The analysis was performed at two levels: micro-analysis and
macro-analysis.

Micro-analysis is a subtle and detailed one where semantic value of every straight
and cross relationship contained in the C.M. was considered; additionally single
words in the statements, degree of universality, semantic and syntactic
congruence, kinds of links between words, etc., were considered as well.

Macro-analysis aimed at grouping terms which would encompass secondary
concepts not carrying new information aside from that contained in source
concepts. Evolving from the initial concept structure, this analysis allowed us to
consider new and more general concept structures providing a more global view
of every teacher's conceptions.
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b) Questionnaire analysis.

Closed questions were scored from 1 to 5, translating those values into a
qualitative scale such as:

_I 2 3 4 5

LOW NORMAL HIGH

In order to ease the analysis of each item and in view of linking them to the
specific targets of this study, we grouped them into three categories: different
methods to solve D.E.; nature of submitted tasks; knowledge of and advantage
taken from history.

Open questions allowed us to grasp the degree of flexibility and ability on the
teachers' side in their search for clashing and interesting situations capable of
provoking querying attitudes among the students.

Each question was analyzed at two separate descriptive levels: global and
particular. At first level, participants' views were made explicit as far as the
above mentioned categories were concerned. At the particular level, nuances of
participants' answers upon items equally valued and which explanations reveal
dissimilar motivations are made evident.

4.3 - Research general conclusions outlook
Analyzing the interviews was used as fulcrum for an accurate analysis of C.M.s
and of questionnaires. Here is an outlook for some of the final conclusions:

- We describe three teaching styles: traditional, transitional and advanced, all
showing math pursuits of some math teachers.

Traditional and transitional styles focus training activities on process-like
aspects, accumulating different techniques to solve D.E.; emphasis is given on
training students to become competent D.E. solvers, leading to an incomplete
development of D.E. "procept" (Tall, 1994a), to a faint flexibility of thought
and to very poor conceptual designs.

- Advanced style sets out D.E. as "mathematical objects" and "foundation
instruments" to formally conduct continuous deterministic models. It favors
handling different representation approaches, so enlarging students' richness of
their concept images linked to the concept and of a variety of mutual
interconnections. All this maximizes cognitive retrieval and flexibilises
proceptual view of D.E.

Next we summarize the analysis of one of the concept maps taken as a
representative sample.

5 - A case study: concept map for teacher "A"
The following table summarizes the propositions appearing in the C.M.
corresponding to teacher "A".
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D.E.

1st LEVEL ALGEBRA ANALYSIS APPLIED MATHEMATICS

2nd LEVEL MATHEMAT. T.QUALITAT. T. UANTIT. I MODELISAT.

3rd LEVEL EMPIRICAL KNOWLEDGE EXPERIMENT. SCIENCES

4th LEVEL PHILOSOPHY NATURE

5.1 - Micro-analysis
Here are some of the aspects we highlight:

- No previously established hierarchical order is to be observed, but rather a
series of ideas linked to the idea of D.E. It relates D.E. with other mathematical
areas: analysis, algebra, applied mathematics and modelisation.

It sets up a connection between "mode of mathematical thought" and "mode of
empirical thought":

LI understanding mathematics is closely linked to applied mathematics. Therefore, it is
linked to particular situations, and less to something one abstracts, i.e. what is called pure
mathematics...[...] I think empiricism is one of the facets mathematical thought has. Let's
say so, especially when it comes from within this descending chain: Mathematics,
Empiricism and Philosophy.

- The term modelisation leads him to analyze the importance of the specialist role
who interprets the model and the difficulty in looking for the correct
mathematical expressions.

- Interpreting the model, whether performed from a mathematical stand pint or
from any other knowledge field, alters the teachers discourse to produce
conflicting situations and interferences "not always appropriate or desirable"
with a knowledge field diverse from our own. Assessment of these difficulties,
added to the situation, environment, subject targets and the students' difficulties
to assimilate all the information provided at a specific stage, influences the way
the teacher acts, disposing away from his subject strategy the modelisation
facets, increasingly focusing on a procedural approach to D.E.

He sees the relationship between Mathematics and Experimental Sciences is very
important:

"A particular science progresses in as much as it mathematises itself. Even though this
relationship is not set out in a straight forward manner, it is obvious it exists...[...] it
conveys something which is abstract or ethereal in a more specific way".

5.2 - Macro-analysis
There are two very neatly separated branches to be observed in the C.M.: i) one
which unifies more particular concepts around Mathematics; ii) another one
which diversifies originating from Applied Mathematics.

A first gaze at C.M. reveals:
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DIFF RENCIAL EQUATION I

IMMO'

IETMEENIFP1

M4,414f2oluiv.mtk..e111111

ANALYSIS

I PHILOSOPHY r-

APPLIED MATHEMATICS I

EXPERIMENT. SCIENCES

A first zoom over C.M. will allow us to unify "concepts" and reach a C.M. with a
central backbone axis. On the one hand, the cross connection between Applied
Mathematics and Mathematics; and on the other, that of Algebra and Analysis
with Mathematics, both granting us to consider a unique hierarchical level which
includes Algebra, Analysis and Applied Mathematics, converging to the term
Mathematics. From there on, the ascending chain keeps on including
Experimental Sciences, among other components.

I D.E. I

I APPLIED MATHEMATICSTOOLS
ALGEBRA ANALYSIS

EMPIRIAL KNOWLEDGE

I PHILOSOPHY

MODELISAT.

EXPERIMENT. SCIENCES

Based on the relationship established between empirical knowledge and
Experimental Sciences, we unify both terms into a unique term which reads
"study of physical reality". Furthermore, we encompass the term Philosophy into
a term which reads: "Nature and World", so that the C.M. would now display the
following appearance:

MATHEMA TOOLS APPLIED MATHEMATICS

PHYSICAL REALITY

NATURE & WORLD

Contained in this third approach, the main concepts are: Differential Equation;
Pure Mathematics; Applied Mathematics; Physical world reality; Study of the
world and of nature.

Zooming once more, we perceive that the three main ideas underlying the whole
thing are: MATHEMATICS / PHYSICAL REALITY / STUDY OF THE
WORLD. His conception is fairly close to that of Newton and Leibniz, and to that
of some sixteenth century mathematicians who tried to compound two very
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important aspects: Mathematics and Physical world reality. This way, the C.M.
becomes:

STUDY OF THE WORLD

PHYSICAL REALITY I

A deep reflection will make us aware that all the initial ideas in the initial C.M.
are hereby represented.

5.3 - Conclusions from teacher "A"'s conceptions
- The global and universal pattern of teacher "A"'s C.M. conforms with his

personal interest and curiosity about Sciences and Mathematics; this is a
circumstance which is not matched with any corresponding direct transposition
to everyday teaching practice

- The global and universal pattern observed for this teacher may cut both ways
and might worm against him. On one side, it allows him for more flexibility and
gives him an overall view of Mathematics within Experimental Sciences; on the
other, he is led to enhance enciclopedism and to present mathematics a an
"object of interest in, and by, itself' independent from other knowledge areas.

- Treatment of modelisation becomes a friction knob between what he "thinks"
and what he "does". Importance given to this aspect of D.E. in the C.M., does
not match its later treatment in the classroom.

- This teacher's teaching practice shrinks down to a summation of algorithms and
solving techniques to approach particular kinds of D.E.

6 - Methodological conclusions
Richness of C.M.s, along with each teacher's recorded explanations, have
provided such a variety of details and information that we have been able to
analyze and interpret each participant's ideas at a satisfactory level of accuracy
and objectiveness.

Both levels of analysis of C.M.s has been very valuable. First, micro-analysis
has allowed for a fully detailed knowledge of participants' conceptions on D.E.
teaching, and to access to very specific details, which would have remained
hardly accessible otherwise. At the same time, macro-analysis has provided with
very general ideas about basic aspects of the teaching and learning of
mathematics, to which all teachers pay especial attention.

- Despite difficulties in analyzing and coding the data, the methodology especially
designed for this research is highly valued, endorsing its use as a tool for
gathering and analyzing data related to the under way research.
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LANGUAGE AND ASSESSMENT ISSUES IN MATHEMATICS EDUCATION

Candia Morgan

Institute of Education, University of London

Recent international concern with assessment is largely based on the assumption that close scrutiny
of texts produced by students in the classroom context will provide valid evidence of their
mathematical thinking and attainment. There are, however, contradictions between such an
assumption and constructivist epistemologies. In this paper, it is argued that it cannot be assumed
that a student's linguistic production transparently represents his or her mathematical thinking.
Examples are provided, supporting this conclusion, of readings of student texts produced by
experienced teachers. The implications for teachers and students, for thinking about assessment,
and for research are discussed.

There has recently been considerable international concern with the development of new modes of

assessment in mathematics (e.g. Houston, 1993; Lesh & Lamon, 1992; Niss, 1993). In particular,
'performance' or 'authentic' assessment is being discussed: that is, assessment which actually
attempts to assess the learning that takes place during everyday classroom activity, often involving

teachers directly in the assessment process. However, in spite of increased teacher involvement in

both everyday and 'high stakes' assessment (for example, in the UK, in teacher assessment of the

National Curriculum and in assessment of 'coursework' as part of the GCSE examination at 16+),
very little detailed research, either in mathematics education or in other areas of the curriculuM, has
considered teachers' assessment practices (Torrance, 1995). In this paper, assumptions underlying

these developments in assessment are questioned, drawing on analyses of teachers' practices in the

particular context of the assessment of reports of investigative work in mathematics (Morgan,
1996).

Most of the evidence available to teachers for assessment purposes takes the form of linguistic,
symbolic and graphic texts produced by students. These texts may be in oral form (gathered, for
example, from formal interviews, incidental conversation between student and teacher, or
overhearing of student-student conversation in the classroom) or in written form. In practice it
seems likely that, particularly in 'high stakes' assessment situations in which teachers are concerned

to be able to validate their professional judgements by providing evidence to colleagues or to
external bodies, written texts will play the more important role. Much of the discussion that follows
and the examples illustrating it specifically concern written texts; I would suggest, however, that the
arguments are, on the whole, equally applicable to the assessment of oral texts.

Although it is claimed by many of those advocating the greater use of writing as a way of learning
in the mathematics classroom that students' writing provides the teacher with insight into student
thinking (e.g. Borasi & Rose, 1989; Miller, 1992), it is simultaneously widely acknowledged that
many students do not have the linguistic skills or judgement necessary to represent their thinking
adequately in written form and that there may be a mismatch between assessments formed solely on

the basis of written work and those which take other sources into account (MacNamara & Roper,
1992; NCTM, 1995). This acknowledgement of problems in taking written texts as evidence of
thinking, however, locates the responsibility for any shortcomings with the students and in the text
itself: if the student's language skills or judgement about what to include in the text were better then
the written evidence could be taken as unproblematic. It is thus assumed that there exists a notional
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'perfect' text that would provide the teacher with a transparent representation of the student's
intended meanings.

Such an assumption is, however, based on a 'common sense' or naive transmission view of the
nature of communication. While mathematics educators have widely accepted some version of a
constructivist epistemology in relation to the ways in which children make sense of their
experiences, including the verbal and non-verbal texts available to them, thinking on assessment

and, indeed, much research methodology still tends to work within a traditional paradigm in which
meaning resides within the text, independent of the reader, carrying the author's intentions exactly.
The assessor's or researcher's role is thus to 'extract the meaning' from the text. A more consistent

epistemology, however, would suggest that there is no necessary simple correspondence between a

piece of text and the meanings its various readers construct. Rather, the meanings constructed will

depend on the resources brought to bear on the text by individual readers. These resources will
vary according to the discourse within which the text is read and the positions adopted by a
particular reader within that discourse as well as the reader's previous experience. As Kress (1989)

argues, the text itself constructs an "ideal reader" by providing a reading position from which the
text is unproblematic and "natural", but readers do not necessarily take up the "ideal" position and

may resist the text by interpreting it within a different discourse using a different set of resources.
If the student writer is to convey her intentions most effectively to her teacher-reader it is necessary

for her to share a knowledge of the teacher's resources and most likely reading position. It seems,

however, that some mathematics students do not share the textual preferences of their teacher-
readers and may thus produce texts constructing ideal readers which do not match the teachers'
expectations and reading positions (Guillerault & Laborde, 1982; Morgan, 1992). When such
mismatch occurs, the teacher, acting within a discourse of school mathematics in which she is an
authority (and hence entitled to define what is acceptable within the discourse), is likely to interpret

the failure of communication as a failure on the part of the student either to communicate
effectively or to understand the mathematical subject matter in the desired way.

Variations in the form of a text have an effect on readers' evaluations of its content (e.g. Hake &
Williams, 1981; Anderson, 1988; Wade & Wood, 1979) and of the intelligence, understanding or
other personal characteristics of the author (Kress, 1990; Hayes et al., 1992) although the nature of

the effect will vary between different contexts. Kress (1990) exemplifies this through his analysis
of two students' economics essays awarded very different marks by their teacher. While both cover

the same areas of 'content' without error, the language of one shows less control over conventional
forms of academic argument and is thus assessed to show less control of the subject matter. There

is, of course, some difficulty in separating form from content in this way as it might be argued that
the formation of an argument acceptable to a particular discipline forms part of the 'content' of that
discipline; moreover, the exact nature of 'content' is likely to be affected by the form in which it is
presented. Neverthiless, it is not possible to discern from the textual evidence alone whether the
perceived weaknesses in this text arise from a lack of understanding of the subject matter or from a

lack of awareness of the expectations of this genre of writing. There is a need to examine the
relationships between forms of language used by students, their forms of understanding, and the
assessments made by teachers on the basis of linguistic evidence.
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In the domain of mathematics education, in spite of interest in developing more diverse and valid
means of assessment, little attention has been paid to mathematics teachers' practices in forming
evaluations of students' written work, perhaps because of a dominant traditional assumption that
answers in mathematics are unambiguously right or wrong and that evaluation is thus
unproblematic. One exception, looking at students' work in a traditional style of 'problem solving'
in the US, is a study by Flener & Reedy (1990) who found that some teachers were unwilling to
accept answers that were expressed in unconventional forms. New developments in assessment
which involve more open problems have not, on the whole, addressed the issue of how the more
diverse responses likely to be produced by students may be received by teachers (Collis, 1992).

The examples discussed in the remainder of this paper illustrate two fundamental issues related to
the use of linguistic evidence of mathematical understanding: the effects on a teacher-reader of
student choices of language in constructing their texts and the variety that may exist between
different teachers' readings of the same text. The extracts are taken from interviews with
experienced mathematics teachers during which they talked aloud as they read and assessed a
number of pieces of student work on investigative tasks. Further details of the study from which
these are taken are given elsewhere (Morgan, 1994; 1996); my intention in offering these examples
here is to illustrate theoretical issues related to language and assessment rather than to present the
results of empirical research.

Two examples

Example 1: Judgement of intellectual competence on the basis of linguistic 'style'

Among the texts read by the teachers were two extracts containing valid general solutions to the
same problem (finding a relationship between the dimensions of a trapezium drawn on isometric
paper and the number of unit triangles contained within it):

Student No.2:

If you add the top length and the bottom length, then multiply by the slant length, you
get the number of unit triangles.

For example:

3 + 5 = 8 and 2 + 4 = 6
8 x 2 =

This, therefore is the formula:

(TOP LENGTH + BOTTOM LENGTH) x SLANT LENGTH = No. OF TRIANGLES

6 x 2 = J.2

Student No.3:

If you add together both the top length and the bottom length and times it by the slant
length, you will end up with the number of unit triangles in that trapezium.

You can write this as S(T + B)

(Bo h extracts were typed in order to avoid judgements based on handwriting.)

The comparable parts of the two texts, as one teacher, Dan, remarked, are very similar. However,
Dan added:
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Number 2 gives me the impression they obviously know what they're talking about
whereas this one Plo.31, although it says almost exactly the same thing in different
words, er, it doesn't give me the same impression.

Obvious differences between the two texts include the fact that No.2 gives two examples and has
used verbal variable names, while No.3 has used algebraic symbols for her formula. Dan had
commented on these differences earlier, claiming that they did not greatly affect his assessment of
the students (see Morgan, 1994). His "impression" appears to be based rather on the verbal
descriptions of the procedure which, as he says, appear very similar with only slight variations in
form. An analysis of the differences between the language used in the two texts suggests a number
of aspects which may have affected Dan's reading:

The use by No.3 of times rather than multiply is less formally 'mathematical' and may be read
as a remnant of the early years of mathematics schooling and hence as a sign of immaturity.
No.3's procedure is more 'wordy' using, for example, add together both rather than simply add.

The number of unit triangles is also qualified as being in that trapezium. These additional
words include reference to the concrete lengths, numbers or shapes. The procedure may thus be
read as being at a lower level of abstraction.
The use of you will end up with rather than you get, by using the future tense, also suggests a
more concrete procedure, located in time (Kress, 1989).
The introduction of the final formula by You can write this as . . . presents the symbolic
formula merely as an alternative to the verbal procedure. No.2's announcement This therefore
is the formula, on the other hand, displays the formula as a product in its own right which
follows logically from the procedure rather than merely being equivalent to it. This may be read
as an indication that No.2 has a better understanding of the importance of the relational formula
and the fundamental difference between this and the verbal procedure, even though she has not
used algebraic symbols to express it. The contrasting modality of these two statements also
suggests that the two students differ in their levels of confidence.

While it is not possible to say which of these features specifically contributed to Dan's impression
of No.3's lesser understanding, there is clearly a mismatch between the student's text and Dan's
expectations which appears to have affected his evaluation of the whole of the student's
performance. This analysis of possible sources for Dan's different evaluations of the two extracts
points to the subtle nature of the relationship between the linguistic form of the text produced by the
student and the evaluation of her general intellectual 'ability'. Significantly, Dan himself was
unable to identify the features of the text which gave rise to his impressions.

Example 2: Different readings of the same text

My second example illustrates the lack of uniformity in various teacher-reader responses to a single
text. Working on a different problem, Steven derived a correct algebraic generalisation,

(A + A) + (A )= 6, from empirically gathered data and applied it to a specific example too large to
2

be checked by experiment. He then presented an alternative method of achieving the same answer
by applying the formula to a smaller value and multiplying by a scale factor:
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An alternative way to do this would be to take the result of a pile starting at 10 and
multiply it by 10

(10 + I0)= 20
10)_
2

e.g. 20+5=25
25 x 10 = 250

No further justification of this method is provided in the text. In particular, there is no indication of
how it was derived. The scaling process is, however, completely valid given the directly
proportional relationship between the variables in this situation. Nevertheless, it appeared to
surprise the teachers reading this text and a number of different, and even contradictory, readings
and evaluations of the student's underStanding and competence were made.

Charles:

Um ok so I mean he's found the rule and he's quite successfully used it from what / can
see to make predictions about what's going to happen for things that he obviously can't
set up. So that shows that he understands the formula which he's come up with quite
well, I think. There's also found some sort of linearity in the results whereby he can just
multiply up numbers which again shows quite a good understanding of the problem I
think.

Charles, having judged Steven to understand the original formula, recognises the mathematical
validity of the alternative method and takes this as a sign of the student's "good understanding".

Grant:

It's interesting that the next part works, I don't know if it works for everything or it just
works for this but he's spotted it and again he hasn't really looked into it any further.
He's done it for one case but whether it would work for any other case is er I don't
know, he hasn't looked into it. . . And he's used it in the next part er used the this
multiplying section in the next part and it's just a knowledge of number that's got him
there 1 think intuition whatever. He may have guessed at a few and found one that works
for it

Grant himself expresses uncertainty about whether the method would work in general. Perhaps
because of this uncertainty, his narrative explaining how Steven might have arrived at the method
devalues the student's achievement, suggesting 'that the processes involved were not really
'mathematical': "spotting" the method, not looking into it properly, guessing, using "just a
knowledge of number" or "intuition". Steven is clearly not being given credit either for the ,result
itself or for the processes he may have gone through in order to arrive at it.

and he's got another formula here . . . I don't really understand what he's done here . . .

So he's produced another formula where . . . he's taken the result of a pile starting at
ten and multiplying by ten and 1 don't understand what he's done there . . I would have
asked him to explain a bit further. He's - the initial formula with two hundred and fifty
is proved to be correct and he's trying to extend it, he's trying to look for other ways,
maybe he has realised that two hundred and fifty could he the exact answer or maybe
not. So he's trying other ways to explain some of the inconsistencies that he's seen but I
think greater explanation needed here.
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Like Grant, Harry seems to have some difficulty in making sense of this method and does not
appear to recognise the equivalence between the original formula and the alternative method. In
spite of this, he is able to construct yet another narrative to explain the student's intentions,
stressing by repetition the suggestion that Steven has been "trying" (possibly with the implication
that he has not succeeded). Harry locates the responsibility for his own failure to understand in the
inadequacies of the student's text.

The differences between the various readings lie not only in different interpretations of the
mathematical content of the text but in different interpretations of the student's level of
understanding and different hypotheses about the methods that the student might have used in order
to achieve his results. There may be a connection between these two aspects; it is Charles,
expressing the clearest understanding of the relationship of the alternative method to the linearity of
the situation, who makes the most positive evaluation of Steven's understanding, while Grant and
Harry, apparently uncertain of the general validity of the method, both construct pictures of the
student working in relatively unstructured or experimental ways.

It could be argued that this example involved a non-standard result and that the demand for greater
explanation (both of the result itself and of the processes gone through in arriving at it) is therefore
fully justified. This, however, begs the question of how the student is to know which of his results
are non-standard or are likely to be perceived by the teacher-assessor as non-standard and hence in
need of greater explanation. Moreover, there is no guarantee that further additions to the text would
lead to greater conformity in teachers' readings of it.

Implicationg

It is clear from the examples discussed above that there is no simple one-to-one relationship
between the text produced by a student and a teacher's assessment of the student's mathematical
thinking on the basis of reading the text. The readings produced appear to be influenced by the
individual teachers' expectations about the probable nature of such a text as well as by the teachers'
own understandings of the mathematics involved. It must thus be asked what is being assessed: is it
the student's mathematical understanding or competence or is it his or her competence in creating a
text that will be judged to be appropriate within the genre anticipated by the teacher? In spite of
wide spread awareness of the difficulties that some aspects of mathematical language may cause for
many learners as readers and listeners, far less attention has been given within mathematics
education to the ways in which students may learn to produce mathematical language themselves,
particularly written language. While 'Writing to Learn Mathematics' has many advocates, few
have addressed 'Learning to Write Mathematics' except in the context of relatively limited (though
important) and generally short and formulaic types of text such as symbolic generalisations or
formal proofs.

Innovations in 'authentic' assessment often involve students in producing a variety of more
extended texts, including in particular reports and explanations. Subtle differences in the language
used may lead, as in the first example above, to differences in the "impression" of a student's level
of understanding achieved by a teacher-assessor. It seems likely that most teachers of mathematics
(and indeed of other curriculum subjects (Langer & Applebee, 1987)) do not have the explicit
knowledge of forms of language necessary either to diagnose the ways in which their own
judgements are influenced by various styles of student writing or to provide adequate guidance to
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their students on how to produce texts that are likely to create more positive impressions. The
analysis in example 1 provides some suggestions of linguistic features that may be influential;
others related to the genre of reports of investigative work are discussed in Morgan (1996). There

is a need, however, for further research to investigate the forms of language that are likely to be
valued in various genres of mathematical text expected of students and to make this knowledge
accessible to teachers and students.

In recommending that teachers and students should pay attention to developing mathematical
language it is important to bear in mind that I am not suggesting that a better grasp of language will

necessarily lead to the production by students of texts that will bring teachers to construct more
accurate representations of the students' thinking and their mathematical activity; no text is entirely
transparent. What knowledge about language is more likely to achieve is the production by
students of texts that, by matching the teacher-assessor's expectations about forms of words, syntax

and organisation, will be more likely to be evaluated positively. At present some students,
primarily those from more privileged backgrounds, already possess adequate linguistic awareness to

achieve this; explicit attention to language in the mathematics classroom could enable more
students to participate in the discourse on an equal basis.

Although pointing to the difficulties and contradictions involved in modes of assessment that may
be labelled 'authentic', I am certainly not advocating a resort to so-called 'objective' testing. Here

too there are substantial problems with validity and, perhaps most significantly, conflicts with
curriculum objectives; these have been adequately critiqued elsewhere. Nevertheless, while
'authentic' assessment may be preferable because of its less objectionable effects on the
mathematics curriculum, it cannot be assumed that the assessments of student understanding
achieved will be any more valid than those achieved by more traditional means. As well as raising
questions about the validity of assessment of student understanding based on the evidence of
linguistic texts, an acknowledgement that language does not transparently transmit an author's
intentions and that different readers may construct different meanings from the same text must also

raise questions for researchers making use of textual data (both written and oral). Again, in raising
this issue I am certainly not advocating abandoning qualitative, interpretive methodologies. I am,
however, suggesting that a knowledge of the ways in which different forms of language within a
text may influence the inferences made by the reader-researcher together with conscious attention to

such forms during the analytic process would be likely not only to enrich the resulting analyses but
also to avoid distortions resulting from a student-subject's lack of control of conventional forms of
language.
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LEARNING MATH IN TWO LANGUAGES
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This paper explores how Latino students construct mathematical meaning during bilingual

(Spanish and English) conversations. The study addresses general questions on the nature of
mathematical talk as well as questions specific to the learning of mathematics during bilingual
conversations. In this paper I consider two frameworks for describing mathematics teaming and its
relationship to language. The first framework, a "discontinuity' model, is used to examine

mathematical expressions in Spanish and English. The second framework, a "situated" model, is
used to analyze two bilingual mathematical conversations between secondary students.

Although several studies have focused on discourse in monolingual mathematics
classrooms (Cobb, Wood and Yackel, 1993; Pimm, 1987; Pirie, 1991), researchers have only
recently begun to consider conversations in language minority classrooms (Brenner, 1994; Khisty,
McLeod, and Bergson, 1990). In general, the research on language and learning mathematics
presents a view of students as facing several discontinuities: from first language to second
language, from social talk to academic talk (Cummins, 1981), and from the everyday to the
mathematics registers (Halliday, 1978).

Research specifically addressing how Spanish speakers learn mathematics in English
classrooms has focused largely on students solving English word problems, rather than
participating in mathematical conversations and constructing mathematical meaning. Most of this
research has reflected a 'discontinuity" model, describing students' problems in understanding
mathematical vocabulary and in translating from English to mathematical symbols (Cocking and
Mestre, 1988; Spanos, Rhodes, Dale, and Crandall, 1988). Rather than seeing learning as mapping

meanings across register or language discontinuities, a 'situated" model describes students'
construction of knowledge as socially and materially situated-that is, viewing what students are
doing as they learn mathematics as constructing meaning by using the social and material
resources available to them. In this paper I consider the contributions and limitations of the

"discontinuity' model and present the analysis of two bilingual conversations through the "situated "
model.

"Discontinuity" model

One way to describe the role of language in learning mathematics is as the mapping of talk
across discontinuities2. This mapping can be between two registers, between two languages, or

1 A register is 'a set of meanings that is appropriate to a particular function of language, together with the words and
structures which express these meanings' (Halliday, 1978). The mathematics register is the set of meanings, words,
and structures appropriate to the practice of mathematics.

2 While this description of the 'discontinuity model may be an oversimplification, it represents a view of the role of
language in learning which sometimes appears in research studies as well as pedagogical and curricular
recommendations.
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across both registers and languages. The "discontinuity" model can be applied to describe
students as learning to use new vocabulary specific to the mathematics register and to map
meanings across the everyday and mathematical registers.

EVERYDAY .1 Yx MATH
TALK TALK

Multiple meanings for the same term can create obstacles in mathematical conversations
because students often use the colloquial meanings of terms while teachers (or other students)
may use the mathematical meaning of terms. Several examples of such multiple meanings have
been described: 'ter can mean "set the table" at home and "a set of objects" in a math context
(Pimm, 1987); the phrase "any number" means 'all numbers' in a math context (Pimm, 1987); "a
quarter" can refer to 'a coin" or to 'a fourth of a whole" (Khisty, McLeod, and Bertilson, 1990); and

in Spanish "un cuarto" can mean "a room° or "a fourth" (Khisty, McLeod, and Bertilson, 1990).

The discontinuity model can also be applied across two languages but within one register:

SPANISH ENGLISH
MATH *I P MATH
TALK TALK

Because there are multiple meanings for mathematical terms within the math register in
each language, one mathematical term in Spanish may have several English terms associated
with it. The mapping then occurs from the many associated senses and words (or semantic field)
in one language to the many associated senses and words in the other language (another semantic
field). For example, "menos" in the Spanish math register can be used with two different senses
and in two different constructions: "minus" as in 'treinta menos diez [thirty minus ten]" and "less
than" as in "diez es menos que treinta [ten is less than thirty] ". Students learning mathematics in
these two languages would need to sort out not only the differences between two registers, but the

correspondences between the math registers in the two languages as well.

The 'discontinuity" model can also be applied across both registers and languages:

SPANISH ENGLISH
MATH 41 10,- MATH

TALK

SPANISH ENGUSH
EVERYDAY 10. EVERYDAY

TALK TALK

When students are talking math in two languages, they are not only mapping meanings
across two registers or within the math register across two languages. Since the associations
between words, meanings, and concepts are different in each language, they are making multiple
connections across several discontinuities. For example, in English the phrase "straight line" can
be associated with the everyday meaning of "straight", as used in the phrase "straight up" or "the
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picture is straight', meaning vertical or the opposite of crooked3. On the other hand, in the Spanish

phrase for "straight line", "linea recta", the adjective "recta" can be associated with other
mathematical objects or concepts, such as right-angledness as in "angulo recto" [right angle]. If
students wanted to describe a line as not crooked they might say "la linea esta derecha [the line is
straight] ", which brings in other associated meanings of "derecha", such as right, meaning the
opposite of left. In any case, there are multiple mappings to sort out: the difference between the two

uses of the term "recta/o" within the Spanish math register, the different associations that
accompany the English term "straight' in the two registers, as well as the correspondences

between the meanings of "recta", "recto", and "straight.'

Although the examples above focus on the uses of words and phrases, a "discontinuity"

model can also include another aspect of the mathematics register, mathematical constructions.

Constructions such as "if, then', 'let be the case, °lets assume", "this is the case because",
are regularly used in explanations and arguments. There are also constructions used to describe

spatial situations or make comparisons. For example, the constructions "there are four more

than [hay cuatro mas que ) and 'there are four times as many as " [hay

cuatro veces mas que refer to two different mathematical situations and yet are easily
confused (especially in Spanish where "mas" is used in both constructions). Students learning
mathematics in these two languages would also have to map the meanings of constructions across

two languages.

Although the °discontinuity' model highlights the mathematics register, it does not address
other important aspects of mathematical discourse, such as the discourse practices reflected in
the use of this register. In other words, the "discontinuity" model can be interpreted as reducing

math talk to the use of technical vocabulary and constructions. However, mathematical discourse,
in any language, involves more than the use of technical vocabulary: there are different discourse
communities (mathematicians, teachers, and students) and different genres (explanations, proofs,
and presentations). Within each community and genre there are practices that arp part of the
general characteristics of discourse. Overall, preciseness, explicitness and certainty are highly
valued qualities, and abstracting and generalizing are highly valued processes in mathematical
discourse. For example, claims are applicable only to a precisely and explicitly defined set of

situations. Many times claims are also tied to representations. Students' participation in such
discourse practices may be more evident when using a 'situated° model.

The 'discontinuity" model may also disregard the situational context of utterances. Although
words and phrases do have multiple meanings, these words and phrases appear in talk as ,

utterances that occur within contexts. Much of the meaning is derived from situational resources.
For example, the phrase "give me a quarter" uttered at a vending machine has a clearly different
meaning than saying 'give me a quarter' while looking at a pizza. The utterance "Vuelvo en un
cuarto de hare [I will retum in a quarter of an hour] said as one leaves a scene has a clearly
different meaning than 'Limpia to cuarto' [Clean your room], uttered while looking towards a room.
When analyzing mathematical conversations, it is important to consider how resources from the
situation point to one or another sense, such as whether " cuarto" means "room" or "quarter".

3Students have been observed to interpret the phrase "straight line to mean "vertical line" (Moschkovich, 1992).
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The 'discontinuity' model as summarized above points to multiple meanings as possible
sources for misunderstandings in math conversations and as an important aspect of learning
mathematics in two languages. In this way it can frame a beginning analysis of mathematical
conversations in two languages. However, this model has an unfortunate consequence: because it

focuses on the conflict between registers or languages as an obstacle in learning mathematics,
and fails to consider situational resources, it can easily turn into a model of students as deficient.
Students' everyday experiences and first language can serve, not just as obstacles, but as
resources for constructing mathematical knowledge and arriving at consensual descriptions of
mathematical objects. While mathematical objects and meanings provide important resources in
mathematical conversations, everyday objects or metaphors and students' first language are rich
resources as well.

Situated Model

Situated perspectives of cognition (Brown, Collins, and Duguid, 1989; Greeno, 1994; Lave
and Wenger, 1991) present a view of learning mathematics as participation in a community where
students learn to mathematize situations and to use language to communicate about these

situations. From this perspective, learning to participate in mathematical conversations (Pimm,
1987) and using social, linguistic, and material resources to construct descriptions and
explanations are integral aspects of leaming and doing mathematics. Within this model, language

use and its relationship to math learning depend on the situation. To describe or understand a
bilingual mathematical conversation we need to consider several aspects of the situation. The
problem context includes whether a student is doing computation or engaged in more conceptual
activities, what the sub-field of math (algebra, geometry, etc.) is, and what representational

resources are available. The historical context includes a students history with each language as
well as with mathematics instruction. The social context includes who the interlocutor is and what
identities or memberships are associated with each language. An example of the importance of the
historical context is anecdotal evidence that people who speak more than one language carry out
arithmetic computations in the language in which they leamed the procedures. After completing a
computation, a bilingual student may or may not, depending on who the interlocutor is, translate the
answer to the other language. On the other hand, if bilingual students have not been exposed to

mathematics instruction in some topics in their native language, it seems reasonable that they
would talk about those topics primarily in their second language. In other situations, students might
code-switch between two languages. These examples points to the importance of the situation in
understanding the relationship between mathematical activity and the choice of language.

Bilingual Math Conversation Example 1: Describing a pattern

This group of students had been constructing rectangles with the same area but different
perimeters and looking for a pattern relating the dimensions and the perimeter of their rectangles.
In the first excerpt, the students attempt to describe the pattern in their group (Translations are in
brackets and italics; for utterances in both Spanish and English, words with an English
pronunciation are in italics. Teacher A speaks Spanish, Teacher B does not):
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1. Alicia: Nora, di que el mas largo que este los estos angulos, mas largos que estan, mas el
perimeter es .. .[Nora, say that the longer that is the these angles, the longer that are, more the

perimeter].

2. Nora: Que? [What?)

3. Alicia: Mas largos que estan los rangulos, rangulos [The longer that are the rangulos,

rangulos].

4. Nora: Lo mas grande que estan.....[the bigger that are].

5. Alicia: No, largo [no, long].

6. Nora: Largo? [long?]

7. Alicia: Aha.

8. Nora: Lo mas largo que estan los triangulos o como se dice....[the longer that are the triangles

or how you say it].

9. Alicia: Los triangulos [the triangles].

10. Nora: These is triangulos (triangles]?

11. Alicia: Lo mas [the more]. . . .

12. Teacher A: No, those are squares.

13. Nora: In Spanish, triangulos [triangles].

14. Teacher A: They're cuadros [pictures).

15. Nora: Cuadrados [squares].

16. Teacher A: Cuadrados, OK. Cuantos cuadrados [Squares, OK. how many squares)

17. Alicia: (;COmo se dice? 6Como? [How do you say it? How?]

18. Nora: Cuadrado [square].

Although these students attempted to find a term to refer to the rectangles neither the

teacher nor the other students could provide the word "rectangulo" in Spanish, which is the
language the students were using. Later on another teacher asked several questions from the front
of the class, including "How many rectangles did we find that had an area of 36?". Alicia tried to

answer the last question, explaining the relationship between the length of the sides of a rectangle

and its perimeter:

Teacher B: Can somebody describe what they saw as a comparison between what the picture

looked like and what the perimeter was ?

Alicia: The longer the ah, the longer (she gestures, tracing the shape of a long rectangle with
her hands several times) the ah, the longer the, rangulo [Tangle] you know the more, the
higher the perimeter is.

An analysis of the first excerpt using the "discontinuity" model would highlight the
importance of knowing a specific mathematical term, and focus on this student's failed attempt to
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produce the technical term "rectangle" in either language. However, if we were to focus only on
Alicia's inaccurate use of the term "rangulo"4, we might miss how her last statement is
representative of mathematical discourse . Although Alicia is missing crucial technical
vocabulary, she used a construction commonly used in math discourse to make comparisons and
describe direct variation : "the longer the the more (higher) the ". Alicia's last
utterance is thus representative of math discourse practices in a way that may not be included in
an interpretation of the "discontinuity" model emphasizing technical vocabulary. Furthermore, a
description of this utterance as the students attempt to map across discontinuities between

Spanish and English, would disregard her use of the situational resources available to her. Alicia
interjected an invented Spanish word into her statement and used gestures to clarify her

description. In this way, the "situated" model reveals how a construction, a gesture, and the
students first language can serve as resources for communicating a mathematical relationship
and participating in mathematical discourse practices.

Bilingual Math Conversation Example 2: Explaining a description

These two students were working on the following problem:

If you change the equation y = x to y = -0.6x, how would the line change?

The steepness would change

Why or why not? NO YES steeper

less steep

They had graphed the line y = -0.6x on paper and were discussing whether this line was steeper or
less steep than the line y = x.

22. Marcela: No, it's less steeper .. .

23. Giselda: Why?

24. Marcela: See, it's closer to the x-axis . . . (looks at Giselda) Isn't it?

25. Giselda: Oh, so if it's right here ... its steeper right?

4 Although the word does not exist in Spanish, it might be best translated as "rangle ", a shortening of the word
"rectangulo*.
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26. Marcela: Porque fijate, digamos que este es el suelo. Entonces, si se acerca Inas,
pues es menos steep. [Because look, let's say that this is the ground, then, if it gets
closer, then it's less steep].

27. Giselda: I thought you meant cual es la diferencia entre esto y el otro [which is the difference
between this one and that one], you know what 1 mean?

28. Marcela: Pero fijate [But look].

28. Giselda : But that's not what they want.

30. Marcela: Yeah! . . . Well, kind of, cause see this one (referring to the line y = x) ... is . .
esta entre el medio de la x y de la y (is between the x and the yl. Right?

31. Giselda: (Nods in agreement.)

32. Marcela: This one (referring to the line y=0.6x) is closer to the x than to the y, so this
one (the line y-0.6x) is less steep.

An analysis using the discontinuity model would focus on the precise meaning of the term
"steep' in the mathematics register. While in math talk this meaning is related to the ratio of rise to
run, this may not be the case in the everyday register (Moschkovich, 1992). Such an analysis

might also focus on Marcela's use of two constructions common in the school mathematics
register, "lets say this is..." and "if _, then in line 26. However, Marcela's explanations in
lines 26, 30, and 32 (in bold) are representative of math discourse in several ways that go beyond

the use of such constructions and are more evident from a "situated' perspective. First, Marcela
explicitly states an assumption, a characteristic practice in mathematical discourse, when she

says: "Porque fijate, digamos que este es el suelo." [Because look, let's say that this is the
ground]." Second, she makes a connection to the representation, another practice characteristic of
mathematical discourse, using the line y = x (line 30) and the axes (line 32) as reference objects to
support a claim about the steepness of the line. And lastly, she uses the metaphor that the x-axis is
the ground: "Digamos que este es el suelo. [Because look, let's say that this is the ground, ] as a
resource in explaining her description. Marcela thus used resources from the everyday context, a
metaphor comparing the x-axis to the ground, and from the mathematical context, the line y = x
and the axes. The "situated" model has thus been useful in describing how this student, rather than
struggling with the discontinuity between the everyday and the mathematical contexts, used
resources from both contexts to construct a mathematical explanation.

Conclusions

The 'discontinuity° model serves to clarify multiple meanings in math conversations and
provides some analytical power for describing leaming mathematics in two languages. However,
this model has several limitations. It can be interpreted as reducing math discourse to the use of
technical vocabulary and it fails to consider situational resources. Because it focuses on the
conflicts and obstacles between registers or languages, it can become a "deficiency' model. The
situated model can serve to broaden the analytical lens to include more aspects of the situation.
This perspective also generates different questions, such as what resources students use. The two
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examples presented above show that, while mathematical objects and meanings do provide
resources in mathematical conversations, everyday objects or metaphors and students' first
language can be resources as well. In this way the "situated perspective can show how the

everyday context and students' first language might be resources, rather than obstacles, for
learning mathematics.
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HERMENEUTIC EXPERIENCES IN CONSTRUCTING LESSONS AND
CLASSROOM RESEARCH

Judith A. Mous ley

Deakin University

Eight teachers were given the same instructions for a mathematics lesson. Their
interpretations, and those of their pupils, demonstrated moments of decision
making which resulted in eight very different lessons, demonstrating distinct
patterns of teaching and learning. This paper outlines how hermeneutic
philosophy relates to teachers' and students' interpretations and re-
interpretations of this text. It claims that the hermeneutic situation of the
researcher is also open to exploration.

Introduction
The phenomenological orientation that this project draws on is hermeneutics,

which is based on the assumption that we cannot divorce ourselves from our own
reason and historical contexts. It argues the hermeneutic position that community-
based experience and the possibilities that people (in this case teachers and
researchers) see for alternative actions are inseparable factorsand connections
between these are open to exploration.

In 1986, Wachterhauser claimed that hermeneutics is "a family of concerns and
critical perspectives that is just beginning to emerge as a program of thought and
research" (p. 5). Nevertheless, hermeneutics originated in ancient Greece, where it
was recognised that people bring different exegeses (hermeneia) to an event, and
that studying these assisted knowledge development. Recognition of this link
between interpretation and learning prevailed through the Middle Ages, where it
was used in the study of biblical texts.

Schleiermacher (1838/1977) initiated a German branch of this phenomenological
orientation by reaching beyond the interpretation of text to examining common
consciousness of kind. He introduced the notions of community and history to this
field. At the beginning of this century, Dilthey (1972) took up these points,
proposing that "expression"a product of an individual's historicitycharacterises
interpretation, and that all social phenomena are the expressions of persons whose
rationality is structured by community-based individual realities.

To summarise Dilthey's theory: the task of the interpreterand also the
purpose of hermeneuticsis to unite the past with the present through a process
of reconstruction. In this way, the connections between expressions, experience,
structure of meaning, and life are clarified. (Odman, 1988, p.66)

More recently, Heidegger.(1962) further developed the notion of historicity. He
claimed that we understand only through a contingent situatedness of a continually-

4 - 35



changing world that is not of our own makingthe world of our historically-
mediated cultureand that our understandings constitute our very being.
Understanding is based on pre-understandings which evolve as we re-develop our
social contexts. A key element of his thesis was the hermeneutic circle:

The hermeneutic circle involves the 'contextualist' claim that the 'parts' of some
larger reality can be understood only in terms of the 'whole' of that reality, and
the 'whole' of that reality can be understood only in terms of its parts. That is
to say that understanding any phenomenon means, first of all, situating it in a
larger context in which it has its function and, in turn, it also means letting our
grasp of this particular phenomenon influence our grasp of the whole context.
(Wachterhauser, 1986, summarising Heidegger's claims, pp. 23-24)

Another element in hermeneutic philosophy is the importance of language.
According to Heidegger (1962), it is the source of pre-understandings, and
"conceals within itself a developed mode of conceiving" (p. 199). It lives and grows
as a response to reality, but also serves to shape that reality.

This notion was furthered by Gadamer (1960), who claimed that our framework
of language-based prejudices (pre-judgements) "constitute the initial directedness of
our whole ability to experience" (p. 245). They develop through living in
communities, mediate perception, and form an historical basis for rational activity.
Westphal (1986) pointed out that the key to unlocking such traditions is the
language of an historic community, claiming "because language is always some
specific language and never language in general, we find reflection on consciousness
turning into reflection on language, which in turn become reflection on tradition"
(p. 70).

The research project reported here explored decision-making moments in the
teaching of an activity. It focused on the way that one short instruction was
understood variously by different teachers and their students. I wish to argue that
interpretations of the original and developing texts at particular stages of the lesson
were framed and shaped by the subjects' contextual historiesand my
interpretations of the resulting data were a product of my own social history.

Method

Five female teachers and three male teachers of classes from Years 1-6 from
three State schools in a lower middle-class area were involved in this study. Each
was met separately by the researcher, and asked to teach a given activity. It was
written on an index card:

From a given piece of cardboard, make a regular shape which holds
one cup of birdseed. Make a similar shape.which is twice as big.

Data collection from each class involved field notes made straight after the
teacher was given the task and after pre-teaching interviews a few days later;
videotaping of the teacher throughout the lesson; and videotaping, audio taping or
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observation of groups of students during the seatwork section of the lesson. Most
importantly, the teachers were shown snippets of their videos two weeks after the
lessons and asked to talk about their intentions with regard to particular teaching
actions.

Analysis was aimed at describing how classroom participants' roles had been
construed and reconstrued throughout the activitythe teachers' initial
interpretation, planning, presentation, control and assessment of the task as well as
the students' re-interpretation and management of the activity. The researcher
aimed to describe the sense that classroom participants made of their social world
the meanings that people give to their environment. These meanings were
examined in the light of Berlak and Berlak's (1981) sixteen "dilemmas of teaching".
Thus two levels of interpretation were involvedthe subjects' renditions as well as
the subjective readings of these by the researcher.

Some results
Construing of the task by teachers and planning of lessons both involved

discourse with self. Similarly, control of classroom activity was discursive, creating
moments where students needed to construct understandings. Their discussions, too,
needed to be interpreted by other students. At these moments, language-based
understandings were shaped by the past, present and perceived future social contexts
of each of the participants. I use the word "moments" to reflect the immediate
nature of split-second periods in which the potential of any leSson is re-shaped.
Identified moments were:

Teachers Students

Interpreting

Planning

Presenting > Interpreting

Supervising Planning

Evaluating Performing

Presenting

Evaluating

This paper focuses on the arrowed link between teachers' presentations of the
task and students' re-interpretations of it. It was found that the former impacted
markedly on options pupils had for the latter. Let me demonstrate this with three
upper-primary-school examples.

Teacher H, Year 6: In the pre-lesson interview, this teacher expressed
concern that the given task may not lead to the discovery of the "mathematical
knowledge- bound within the task ". His instructions to pupils, written and read
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aloud, were "Make a box which holds one cup of seed. Make another box which
holds twice as much." A week after the lesson, the researcher (R) interviewed this
teacher (TH):

431 R I am interested ... to know why you thought the shape should be a box. Had you
thought about the possibility of making other shapes?

432 TH Yes, but I wanted to build on this lesson to give them an understanding of volume.

433 R Good. So they will do that with box shapes?

434 TH Yes. They have to learn length by width by height and ... well, they couldn't do
that with other shapes.... Oh, I guess they could, but, like cones and other shapes
I didn't want shapes where they couldn't measure length and width and height.

In planning the activity around a particular learning objectivea formal rule
Teacher H expected all students to take a directed path of "discovery". His pupils
demonstrated an acceptance of this context, displaying characteristics of students
waiting to be led. For example:
463 Rob But it has to be a box. Not a box. He said a cube. That's the same all around. The

same size - this way, this way, this way. Ask him how big. Darren, ask him how
big to make it.

464 Darren How big would fit. You've got the cardboard. How big could we make it? It has to
hold a cup.

465 Rob Just ask him, Daz. He knows.

466 Darren Okay. He knows. (Inaudible) Mr H...

Teacher N, Year 5: This teacher wanted pupils to discover what happens
when all dimensions of a cube are doubled. Her instructions were oral. She first
told the children to "Make a cube 5 cm by 5 cm by 5 cm". When they had all
finished, she asked them to make one measuring 10 cm by 10 cm by 10 cm and to
use the birdseed to compare the volumes of their shapes.

Her students achieved her aim but also displayed dependence:

134 Rhana It's too big. We were only meant to double it. You went wrong, Karen

135 Karen No. They are right. 5 cm this one, 10 cm that one. You try it ... (inaudible) . . . With
the ruler.

136 Rhana Mmm, but there's too much seed. It should be two lots. Why is there seven and a
half? It's mad. Two lots would be right. Don't write it down. I'm going to ask her
if we did it right.

Following Rhana's question, the teacher called the class to attention. After a
short discussion which led to the teacher expressing the generalisation that "The big
one holds eight times as much", she gave a six-minute explanation of why this is so.
Gestures were used frequently and terms such as third dimension, multiply,
multiples and comparative volume were used. When asked later if she thought that
all of the children would have understood, she claimed:
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231. TN Yes. That is why it is important to have the hands-on work first. Yes. They had
seen it with their own eyes. That is why children need to do real things in
mathematics - so they understand why the mathematics works.

Teacher M, Year 5/6: On seeing the activity, this teacher said:

730 'HA It will be interesting to see what they make of it. I'm not even going to explain what
regular means. I wonder if they will ignore the word.... Seeing the different shapes
will be fun. And their reactions when they double different aspects.

Teacher M presented the task as given, writing the instructions on the board,

then reading them aloud. The children could work in groups or alone.

One group of three girls built a square pyramid, left unsealed at the apex so seed

could be poured in using a funnel. They found that their shape held more than one

cup of seed, so traced it onto another piece of card and trimmed the triangular parts
of the net gradually until a pyramid of the right size was formed.

748 Silvia

749 Binny

783 Silvia

784 Rachael

785 Binny

786 Silvia

Don't take too much off. Remember ... (inaudible) ... you are not just taking that

bit. That long bit. You are taking it four times. There ... and there ... and (etc.)

And it's not just thinner. The shape. Look. It gets shorter so you are losing this bit.

The top bit every time. (Some trial and error followed)

Good. That's it. One cup. tape it up. ... Now. Two cups. Now for two cups.

Two cups. Yes. Or twice as big? Two cups isn't twice as big.

(Inaudible, then laughed.)

Yes it is. But I know. But ... I know what you think. Like ... like two times the
edges. Make the bottom twice as big. The sides too?

787 Binny Not the sides.

788 Silvia Why?

789 Binny We make the bottom twice as big. Right? Longer and wider. But that will be like
this ... and this ... and this ... and this. Like four times as big. We need to decide if
we want it really twice as big ... or each side double fourth as big. Anyway, then
we could cut down the sides like we did ... so it holds two cups.

790 Silvia

791 Binny What edges? What are you on about?

792 Silvia These edges. The sides. The sides of the square.
See. Look. You've got a square, right? (drew a
square.) Then you double this one ... and that
one; and you don't have two. What do you have?

Mmm. I get it. That way it's twice as big. Well, on the edges anyway.

793 Binny Four. I know that.
794 Silvia Good. Four. (inaudible) So do we want twice ... or four times? Hey? I reckon only

twice. Twice as big.

795 Binny Yeah, and ...

796 Silvia And it holds two cups. So its twice as big like that.
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797 Rachael But it needs to be twice as high.

798 Silvia Look, it doesn't say twice as high on the board. Or two cups. Look.

799 Rachael No.

800 Silvia We need to decide ... to make up our minds. What are we going to call twice as big.
Jees, I wish we'd started with a box.

801 Binny No, a box is no good. They are doing a box. Anyway, it's the same. We would be
the same. Look, if you do this to the box ... (Binny drew a sketch of a box then one
twice as long) ... you've got ...

802 Rachael Two cups. But it's not twice as big.

803 Silvia Yes. Yes it is.

804 Rachael But it's not twice as wide ... or high ... just long. Forget the box. I think we should
not double the sides. Of the bottom. We should work out what would make twice
as big really. Like. The square. The area ... (inaudible) ... of the square.

805 Silvia Yeah. Mmm.

806 Binny Times it ... Times it by one and a half. Two is too big because you get four. No.
One and a half ...

807 Silvia That's too big. One point two five or less? No,
probably more ... that ... one and a quarter. It's
not one and a half. It's less. Look. If you've got
this square (drew a square). Right? And it's half
as long again ... and half as long on to this side
(hatched areas). Right? That's one and a half?
But then you've got this piece (double-hatched
areas). That means one and a half is too much.
It's more than two.

808 Rachael Can we work backwards? lees. No. (long pause) We don't know how many little
squares. Get some graph paper so we can do it on little squares. Like , we count the
squares. Then double it.

809 Silvia Yeah. Then work out how long the sides need to be.

810 Binny Would that make it hold two cups?

811 Silvia No. Rachael, where's the graph paper?

Discussion

For Gadamer, the universal and the particular are co-determined and hence can
be understood only in relation to each other. The socio-historical context of the first
two lessons are familiar to us all who share traditions of teacher-centering,
objectivism, and hierarchical forms of control. Teachers' and children's expressions
of such histories (the parts) and many others like them contjibute to the whole
contexts, i.e. to interaction in that classroom, to mathematics education and more
broadly to the nature of schooling. But at the same time the parts are shaped by that
whole. Our community histories form powerful constraints to thinking and acting
otherwise.
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Similarly, the historical context of the third classroom is familiar. This teacher
has developed what many would call "constructivist" ways of working; and is very
articulate about her constructivist style and how she developed it progressively over
the last ten years. Once, the "whole" of this context would have been almost
unimaginable, to her or to us, but now we see such contexts as possible and
desirable. In other place and other times they may not be seen in this light.

Well after the completion of my data analysis, it is useful to reflect on its own
hermeneutic aspects. Why did I choose to focus on these incidents (and similar ones
for each of the moments listed above), then interpret them as being typical of
particular pedagogical styles? Why did I explore them in relation to Berlak and
Berlak's control dilemmas and what were the effects of this? What are the silences
in my work and why do they exist? What particular incidents from my past,
present, and planned future histories set the horizons of the reality from which I
view the world?

I remember early discussions with Glen Lean about Platonist versus
Constructivist strands of the philosophy of ideas, and can recall other vital dialogues
and readings as I struggled to come to grips with this area. Similarly, current
philosophies of mathematics education expressed in texts and other professional
conversations, and dominant ideologies expreSsed in dialogues within my Faculty, as
well as papers and tutorials where I tested emerging ideas all played their parts in
this development. These and other experiences provided new possibilitiesand
hence potential for the interplay between reality and possibility. On the other hand,
my reality constrained possibility by its very existence.

Space does not allow more detailed dialogue about the context of the inquirer. It
is clear, though, that my research actions (and possibilities as well as lack of
possibilities for alternative approaclies) were shaped by my beliefsin turn carved
by interest in the hegemony of classroom controlitself a product of my schooling
and identifiable aspects of my professional community life. The context of my work
is a product of time and places. While it is a property of individuality, that
individuality has been developed in a community with its own particular history.

Conclusion

Gadamer claimed that authentic understanding is not detached from the
interpreter but constitutive of his or her praxis. He stressed that understanding can
only be an act of interpretation through the life-world of the interpreter. Text, for
instance, written or spoken ,by one partner in the hermeneutic conversation, is
expressed only through its interpreter (Gadamer, 1975). Such claims have
implications for us as teachers and as researchers.

It was not difficult to find many examples of hermeneutic situations in the
classroom interactions. These became useful starting points for dialogue with the
teachers about 'their interpretatiOns of their own actions. They were able to link
their actions with particular beliefs and habits, embedding these in their
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professional training or experience as well as in current institutional and social
contexts. Hermeneutics provides a useful framework for discussing such moments,
but it was not surprising that teachers' and students' understanding, interpretation
and application were clearly linked with each other and with their social contexts.

However, what has really intrigued me in my reading on hermeneutics is the
possibility of applying the notion of historically-determined contexts to my own
work as a researcher. Links between language, experience, and the possibilities I see
for alternatives have become exciting new areas for exploration. Just as the
instructions given to (and by) teachers were texts, my data and written accounts are
texts not to be taken as givens. These are objectswhich Gadamer calls "universal"
in that they are now open to many particular readingsto be understood.

... the interpreter seeks no more than to understand this universal thing, the
text... In order to understand that, he must not seek to disregard himself and his
particular hermeneutical situation. He must relate the text to his situation, if he
wants to understand at all. (Gadamer, 1972, p. 289)
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YOUNG STUDENTS' INFORMAL
KNOWLEDGE OF FRACTIONS

Han lie Murray, Alwyn Olivier and Piet Human
Research Unit for Mathematics Education
University of Stellenbosch, South Africa

Research shows that young children come to school with a rich store of in-
formal mathematical knowledge. It has been found that for whole number
arithmetic this knowledge should be built on and that children's informal
methods lead to correct and powerful computational methods. It is felt that
children's informal knowledge of fractions should be used in the same way.
This study explores young children's informal knowledge of fractions and
suggests equal sharing situations as appropriate links to young students'
intuitions.

Introduction

Several teaching experiments have shown that it is possible to elicit and
build on young children's conceptualizations of computational problems
and the strategies they construct based on these conceptualizations. In-
stead of ignoring or even actively suppressing children's informal knowl-
edge, and imposing formal arithmetic on children, such instruction recog-
nizes, encourages and builds on the base of children's informal knowledge.
This is made possible and even easy because young children's informal
knowledge about whole numbers (and their understanding of problem sit-
uations involving whole numbers) is strong and almost completely free of
misconceptions (e.g. Murray & Olivier, 1989; Murray, Olivier & Human,
1991, 1994).

It has been suggested that young children also possess similar informal
knowledge about fractions, which should be used in the same way (e.g. Stef-
fe & Olive, 1991; Baroody & Hume, 1991).

However, there is evidence of misconceptions about fractions among el-
ementary school students. D'Ambrosio and Mewborn (1994), for exam-
ple, document a number of misconceptions (which they call limiting con-
structions) and possible reasons for these limiting constructions in young
students. Some of these limiting constructions clearly originated in the
child's pre-school or outside school experiences. For other limiting con-
structions it is difficult to determine the role that teaching might have
played, especially inthe case of older students (e.g. Baroody & Hume,
1991; Pirie & Kieren, 1994; Steffe & Olive, 1991).
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The limiting constructions that are not caused by teaching may have dif-
ferent sources. For example, at a certain level of development the young
child does not discriminate between units and parts of units, and will
count three whole chocolate bars and half a bar as "four chocolates" (a
developmental phase problem), whereas children who accept half of an
object as any big fractional part are simply responding to the inexact but
functionally sufficient treatment of such parts of objects in the home (a
problem with words which have very exact mathematical meanings but
which are used loosely and vaguely in everyday situations).

This study

This study forms part of our on-going research project on problem-centered
learning and teaching of mathematics (e.g. Murray, Olivier & Human,
1991, 1994).
The main purpose of this study was to gain more information on the kind
of informal knowledge of fractions and problem situations involving frac-
tions that young children bring to school. Knowledge about fractions in-
volves knowledge about the concept, of which two subconstructs are the
part-whole relationship between the fractional part and the unit, and the
idea that the fractional part is that quantity which can be iterated a cer-
tain number of times to produce the unit (D'Ambrosio & Mewborn, 1994).
It also involves knowledge of the fraction names and of the fraction sym-
bols. Since it is possible that lack of knowledge of the fraction names
and symbols may prevent young students from demonstrating their intu-
itive concept of fractions, we decided to create problem situations to which
students could respond, rather than asking questions or presenting test
items which use fraction names and/or fraction symbols (e.g. Neuman,
1993). A number of equal sharing problems with remainders which also
had to be shared out, were formulated. No fraction materials or manip-
ulatives (e.g. clay) were made available to students; only unlined paper
and crayons.
A first grade and a third grade classroom from a small school were in-
volved in the study. There were 22 students in each class. The par-
ent population is lower to upper middle class. Although these students'
whole number arithmetic teaching is based on a problem-centered ap-
proach where students are confronted with a large and planned variety
of problem situations that they solve through individual effort, discussion
and reflection, the study of fractions in the first two grades was up to then
limited to teacher-led discussion of halves and quarters based on activities
involving paper folding and pre-partitioned manipulatives.
The researcher (Murray) posed two problems to the students during the
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fifth month of the school year. The students solved the problems individu-
ally. Individual students then explained their thinking to the researcher
or the teacher. These annotated solution strategies were used as the basis
for the following analysis.

First graders' solution strategies

The following problem was posed to the.six weakest students (as perceived
by the teacher):

Three friends have to share four vienna sausages among them-
selves so that nothing is left and they each get an equal share.
How must they do this?

The other students solved the same problem with seven sausages. We will
refer to these problems as 4 3 and 7 3.

The teacher had not discussed fractions at all up to then.
None of the students referred to the fractional parts as anything other
than "pieces" or "bits," but where appropriate distinguished between "big-
ger pieces" and "smaller pieces." All students used direct representations
(in this case drawings of the friends and the sausages) to solve the prob-
lem.

We summarize below the students' solution strategies, tentatively pre-
sented in ascending order of sophistication. We illustrate each strategy
with an example.

1. Partitioning some units (i.e. whole sausages) so that the total number
of units and fractional parts is a multiple of the divisor. (Frequency: 1)
Brigitte solves 7 3 by keeping two
units whole, cutting five units in
half and then sharing out the 12
"objects" equally among the three
friends, ignoring the size of the ob-
ject. She says: "Each friend gets four
sausages."

2. Sharing out the maximum number of units, then partitioning the re-
maining units into inappropriate fractional parts (i.e. not multiples of
the divisor), so that when the fractional parts are shared, one friend
gets more parts. (Frequency: 1)
For 4 3, Eustace gives each friend one unit, partitions the remaining
unit into quarters, and shares out one quarter to each of two friends
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and two quarters to the third friend. He explains: ."Each boy gets one
sausage and one piece, but this boy (pointing) gets one sausage and
two pieces." He says that the sharing is unequal, but that this is his
best plan.

3. Sharing out the maximum number of units, then partitioning the re-
maining units into the correct number of fractional parts which are
however of unequal size. (Frequency: 3)
For 7 3, Charlene gives each friend two units, then partitions the
remaining unit into three pieces as follows cE:i) , and gives each
friend a piece.

4. Sharing out a mixture of units and different fractional parts. (Fre-
quency: 3)
For 7 3, Anel gives each friend one unit. She then partitions two
units in half and gives each friend two halves. She partitions the
remaining unit in thirds and gives each friend a third. She explains:
"Each friend gets a sausage and two bigger pieces and one smaller
piece."

5. Sharing out some units and an appropriate number of equal-sized
fractional parts. (Frequency: 1)
For 7 3, Pierre gives each friend a unit, then partitions the remain-
ing four units into thirds. Each friend therefore receives "one sausage
and four small pieces."

6. Sharing out the maximum number of units, then partitioning the re-
maining units into a number of equal parts which is a multiple of the
divisor. (Frequency: 1)
For 4 + 3, Chester gives each friend ezif4one unit, partitions the remaining
unit into 12 pieces, and says each
friend gets "one sausage and four 4. C
crumbs."

7. Sharing out the maximum number of units, then partitioning the re-
mainder into the minimum number of suitable fractional parts. (Fre-
quency: 11)

sausages and a piece. I cut this 00000po
For 7 ÷ 3, Johan explains: "Two

sausage into three pieces. If you put
the pieces together, they make one, 000one sausage."

8. Partitioning all the units into fractional parts of which the denomi-
nator is the same as the divisor, then sharing out the parts from each
unit in turn. (Frequency: 1)
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For 7 ÷. 3, Jenni partitions each
sausage in thirds and says that each
friend receives seven pieces, one
piece from each sausage.
She also states that you can put six
of these pieces together to make two
whole sausages.

Third graders' solution strategies

The 7 ÷ 3 problem was posed to the whole class.
These students had yet not studied fractions in grade 3, but had studied
them as described in the previous grades.
Students were requested to also make a drawing of their answer even
if they believed that they could solve the problem numerically without
drawing.
We again summarize the strategies.

1. The solution is drawn correctly (two units and a third of a unit), but
the units and fractional part are counted together, giving "3 sausages"
as answer. (Frequency: 1)

2. Sharing out the maximum number of units, ignoring the remaining
unit. (Frequency: 1)

3. A solution of 21 units is clearly drawn and named "21." (Frequency: 3)
Koba:

4. The correct solution is clearly drawn, but not named. (Frequency: 3)

®I

5. The correct solution is clearly drawn, but incorrectly named as 21 or
21 (Frequency: 11)

Jay draws this picture:
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Marco:
000 0 0 0 0

°Oa -77-3 =

6. The correct solution is clearly drawn and named. (Frequency: 3)
Chris: 7 =3 =2

Discussion

The Grade 1 solution strategies have some interesting features. Firstly,
these students seemed to have had even less exposure to the fraction con-
cept and especially to the fraction names than we expected. No student
tried to name the fractional parts; they simply referred to the parts as
"pieces," sometimes as "bigger" and "smaller" pieces. Previous experience
and discussions with teachers had led us to expect that "half" was com-
monly misused as a name for any big fractional part, and "quarter" for a
small part. No student in this group did so.
We also believed that the idea of "equal sharing" was problematic for
young children, partly because sharing situations within a family usu-
ally involve family members of different ages and that "fair" sharing in
these cases actually imply unequal shares, and partly because even at-
tempts at equal sharing in the home are frequently only approximate
(cf. D'Ambrosio & Mewborn, 1994). Most of these Grade 1 students fully
understand equal sharing, with 17 out of the 22 students constructing
equally shared solutions. Also, none of the students ignored the remain-
der or tried to get rid of it ("Give the extra sausage to Mother").
Lastly, we found it surprisng that only one student (Brigitte) did not dis-
tinguish between units and fractional parts, and concentrated on the num-
ber of "pieces" given to each friend instead of on.the "amount" of sausage.
One difference between the first and the third graders' responses is that
four third grade students produced wrong answers, as opposed to incor-
rectly labelled answers (solution strategies 2 and 3). This seems like an
outcome of their instruction where the exclusive use of halves and quar-
ters had led to a limiting construction: They provided answers of 21 and
2 because they could not conceptualize any other possibility, whereas the
first graders' solutions utilized a variety of fractional parts.
Another difference is the high incidence of incorrect naming of the frac-
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tional part among the third graders, although their drawings clearly show
that the students are dealing with thirds and not halves or quarters (a fre-
quency of 11). One reason for this may be that instruction failed to make
students understand that halves and quarters are not general labels for
fractional parts, but signify particular fractional parts. The fact that they
had met only halves and quarters in their teaching probably strengthened
this misconception.
This study shows that first graders do have "a wealth of informal knowl-
edge on which we can base the teaching of fractions" (Steffe & Olive, 1991).
These young children clearly have informal knowledge about the fraction
concept, enabling them to understand and solve sharing problems involv-
ing fractions. Knowledge of the fraction names and symbols (even halves)
seems to be very little, but the incidence of limiting constructions also
seems to be very low. Only one first grader failed to discriminate between
units and fractional parts, and another four produced unequal (but only
slightly unequal) shares.
We hypothesise that the limiting constructions which have been identified
may largely be the results of teaching and the use of particular materials.
The third grade responses point towards the dangers of limiting students'
experience to only some fractions (halves and quarters) and also to the
limited success of paper folding and similar activities as environments in
which to construct the concept of fractions (cf. Pothier and Sawada, 1990).
On the other hand, the first graders' responses show that equal sharing
situations elicit ideas about partitioning units into equal parts and about
combining parts to form units both ideas are crucial subconstructs of the
fraction concept (the part-whole and the iterative-part-to-form-a-whole
subconstructs).
We therefore suggest that many of the older students' limiting construc-
tions may be prevented by introducing fractions in the lower elementary
school through posing sharing problems with remainders that also hp.ve
to be shared out. This encourages young students to construct their own
idea of fractions through their own actions. Different solutions can then
be compared and discussed, the teacher gradually introducing the neces-
sary terminology and notation.
This programme is already followed in the lower elementary grades of
some local schools (cf. also Empson, 1995 and Streefiand, 1993). The use
of sharing problems should, however, only be regarded as an introduction;
students also need problem situations which embody the other meanings
of fractions (fraction as ratio, as operator, etc.).
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Tensions in the Novice Mathematician's Induction to Mathematical Abstraction

Elena Nardi

Oxford University Department of Educational Studies
The ongoing doctorate project, on which this paper is based, is a study of the novice
mathematician's conceptual and reasoning difficulties in their encounter with mathematical
abstraction. For this purpose 20 Oxford first year mathematics undergraduates have been observed
and audio-recorded in their weekly tutorials and interviewed twice in a period of two academic
terms. The Orford syllabus topics. which the tutorial and interview content draws on, are Linear
Algebra, Continuity and Differentiability, Topology, Sequences-and-Series and Groups-Rings-and-
Fields. Data analysis is now in process and aims at the emergence of data grounded theory. Here I
present two potentially problematic aspects of the novices' induction to mathematical abstraction.
Both observations constitute parts of the emerging theme on the nature of the novice
mathematician's enculturation into the thinking and acting within the realm of Advanced
Mathematics.

The theoretical origins of the study, on which this paper draws, lie in the realisation
that an educational reform regarding mathematics teaching cannot take place in the
absence of an awareness of the learner's thought processes. Coupled with the
intrinsically idiosyncratic epistemological complexity of mathematics, the cognitive
dimension of didactics arises as particularly significant [I].

With regard to learning advanced mathematics this study originates in the
assumption, grounded on the relevant literature (e.g. [8]), that a novice
mathematician faces a series of cognitive difficulties in the encounter with
mathematical abstraction. As noted in previous presentations of parts of the study
(e.g. [6], [7]) abstraction is meant both from a psychological perspective i.e. that the
advanced mathematics learner has to build up knowledge in an axiomatic way and
learn how to reason deductively; and from an epistemological perspective, i.e. that
the nature of the objects of advanced mathematical learning can extend beyond the
physical or the numerical.

In the above, learning is not seen as isolated in a cognitive vacuum but embedded in a
sociocultural context [10]. Therefore, in a constructivist strand of thinking [5], the
learner's cognition, while being personal and individually interesting, is also
emphatically seen as taking place in a learning environment. In this case the context
within which learning takes place is the Oxford undergraduate mathematics course.
This study seeks to construct a psychological profile of the novices' difficulties in
their encounter with mathematical abstraction by probing into their expression of
learning. It is assumed here that cognition can only become visible and accessible
through the learners' oral and written (in this study: oral) articulations of their
mathematical thinking. As a thought process cognition is esoteric and inaccessible. In
tact this is a phenomenological study of advanced mathematical cognition [3].

Experience from a Pilot Study to this study 161 provided evidence that the tutorials
given to first year mathematics students in Oxford can be a substantial source of data
regarding the novices' expresssions of mathematical cognition. Observation, audio-
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recording of the tutorials and interviewing of the observed students were chosen as
the qualitative techniques through which access to these expressions would be
achieved. Observation of tutorials on Linear Algebra, Continuity-and-
Differentiability, Topology, Sequences-and-Series and Groups-Rings-and-Fields was
relatively unsystematic but informed by the cognitive aims of the study as well as by
research in the field of advanced mathematical thinking. It lasted 14 weeks and
approximately 200 hours. Interviews were carried out twice and they were minimally
structured around mathematical topics that during observation emerged as
particularly problematic for the learners. The openness of the selected
methodological techniques was a natural consequence of the decision to ground the
theory generated by this study on the data PI.

Data analysis takes place at the time this paper is written. Tutorial and interview
recordings have been transcribed and tabulated in terms of their mathematical content
and their didactical content. The tutorial material has been repeatedly scanned and,
via a gradually more selective process, a number of crucial learning episodes has
been extracted as the pivotal material for the analysis. The rest, called non-episodic
material, is used as supportive material that enriches and contextualises the episodes.
The latest selection resulted in the extraction of approximately 70, crucial learning
episodes.

The interview material consists of collections of open individual discussions with the
students on six particularly problematic topics: accumulation/isolation
points/openness/closedness, limit, spanning sets, compactness, convergence of series
and sequences and the First Isomorphism Theorem for Groups/relevant concepts.

Further analysis is currently arranged in the form of five sections on the Foundations
of Analysis, Calculus, Topology, Linear Algebra and Abstract Algebra . Each of the
70 learning episodes mentioned above is presented and analysed as a text. Text here
is the conglomeration of the recording, the transcript, the notes taken during
observation and the contextual documents (problem sheets, lecture notes, reading
lists). Analysis of the text is supported by the non-episodic material and the
interviews. The psychological observations on each episode are collected and
presented as a totality in the end of each section. The final synthesis of the cross-
topical theoretical abstractions of the study is based on the intermediate theorising
that takes place in the five topical sections.

The Novice's Induction to Mathematical Abstraction: an Uneasy Encounter

As an example of the cross-topical themes that constitute the final theorising of the
study - or as a flavour of the outcomes that are now in the process of emerging I

refer here to some aspects of the novices' transition to advanced mathematical
thinking as observed in the tutorials. This transition signifies the quintessential
cognitive shift that learners are expected to undertake in the first few months of
university studies. Therefore in a sense, and given their secondary school
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mathematical background, these students' transition from school to university
mathematics stands as a metaphor for the transition from concreteness to abstraction
and from empiricaUinductive explanation to deductive proof and axiomatics.
Endorsing the Piagetian discourse on Reflective Abstraction and the Vygotskian
approach to learning in a sociocultural context, this transition is seen here as a social
and psychological enculturation process [2]. This paper highlights some of the
tensions generated in this cultural exchange between the Expert (the tutor) and the
Novice (the student).

In the four Extracts cited below the focus is on the tentative induction of the novice to
the style and essence of formal mathematical thinking. Inevitably the tutors'
perceptions of this style and essence influence dramatically their responses to the
students' style and thinking. Here I draw on two kinds of tension observed in the
exchange:

T1. The tension between verbal/explanatory and formal mathematical expression.

T2. The tension between Proof via Basic Principles and Proof via Quoting Proved
Statements.

I present the Extracts and briefly discuss.

Tension I: The tension between verbal/explanatory and formal mathematical
expression

Extract 1.1
Middle of Second Term. Individual Tutorial to Student Jack. Series and Sequences.

They are looking at Jack's draft. His answers have been generally correct but the tutor
comments several times on his writing not being clear and precise. In one of the questions the
tutor and Jack agree on using Cauchy's Criterioni and the tutor asks Jack what is a Cauchy
sequence. Jack replies:
J: ...for every n bigger than N... any small...Ws the difference between any two terms lifter a
certain limit is less than epsilon. [1 I I
Later on the tutor complains about Jack's writing on another question2 from thexime problem
sheet:
T: One thing I couldn't understand is where did you get these numbers from. Er,... you didn't
seem to explain your answer properly to... I wasn't sure how to explain where these numbers
came from...
J: Yeah,. that was brief.. [J21
T: I think you know what you are doing because you got the right answer which 4,1 terminal..
but...can you explain to me...
Then Jack describes what sequence nr looks like: he explains how he first removed all the
numbers containing the digit 7 from the tenths, then the hundredths and so on; first removing
numbers ending in 7, then the others. At the same time he was careful with not removing the
same number twice. He then noted that II/nr was convergent by comparison. The tutor listens
and in the end he approves:

ar is a Cauchy sequtnce if Ves0 3NE K such that Vit,m>INI Ian -amke.

14 -53 -.1L

1



T: Right... but as I said none of this was written and you know it could have been a little ... but
OK if you feel alright about this, it is right and solemn after what you said,... but ... Do you want
me to go through the whole thing on the board or you feel you knew what was happening in
there?

J: Well, my problem is with the mathematical writing of this... I mean you can's write
something like this in the Mods It's not the idea, it's the mathematical writing3... [J3]

The incident starts with the tutor's comment on Jack's problematic writing. However
it is JI, Jack's attempt at explaining what a Cauchy sequence is, that illustrates
graphically a tension in Jack's mind: Jack attempts a reconstruction of the formal
definition (...for every n bigger than N... any small...!), fails and resorts to what he seems to
be quite familiar with: ordinary words employed to present his conception of what a
Cauchy sequence is.

His verbal explanation is a semi-formal statement that conveys a concept image [9]
of a Cauchy sequence as a sequence whose terms are coming infinitesimally close to
each other. In J1 verbal explanation wins over formal definition. In other words in
Jack's concept image personal interpretation of the definition is a stronger presence
and a much more easily retrievable piece of information than the formal definition.

The tutor initiates the discussion on mathematical writing and Jack agrees (J2). The
tutor then encourages Jack to expand on his explanation in a precise manner. He
approves of the thinking behind Jack's writing but is very firm about conveying to
Jack the standard requirement for adequate explanation in a mathematician's writing
instead of dry sequences of numbers on paper . Given that Jack has not appeared to
be reluctant or incapable of justifying his intuitions, it seems that what keeps him
away from putting his justifications on paper is a concern about the acceptability of
ordinary discourse in the presentation of a mathematical argument.

Accustomed to wordless, notation-laden telegraphic proofs from lectures and
textbooks, Jack seems to confuse logical formalism with linguistic formalism
ignoring that the latter is merely a semantic aid to the former. Jack's concern (J3) has,
apart from the metamathematical one outlined above, a practical dimension too: he is
worried that the use of ordinary language in a demonstration of a mathematical,
argument is not acceptable in exams. However his concern and hesitation, despite
stopping him from elaborating in writing on the question talked about in Extract 1.1,
are signs of a formal mathematical consciousness in genesis. Jack seems to begin
being preoccupied with formal mathematical expression: J2 and J3 are indications
that in Extract 1.1 Jack does not merely pursue an answer to a mathematical question

actually he already has one - but to questions of mathematical form and convention.

2Let n I. n2, n3 be the subsequence of the natural numbers with any number containing the digit 7 omitted. Show that.
E(nr)-1 converges.

3Mods is an abbreviation for Moderations, the examination taken by undergraduates in the end of their firstyear.
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In the following Extract 1.2, Carly expresses a similar concern. Remarkably it is with
the student's initiative this time, not the tutor's, that the issue of mathematical writing
is brought up; that maybe the reason why Carly's dissatisfaction is more persistent.

Extract 1.2
End of First Term. Pair Tutorial to Students Carly and_Chadielsilent) Continuity and
Differentiability.

Carly is dissatisfied with her answer on a question's:

C: I didn't really answer it properly... My answer was not mathematical, it was more like an
essay... I could see it was true but I couldn't see how to prove it mathematically.
She then describes what she did:

C: If you differentiate this, you get that the xn-1 dominate and ....f is monotonic. So if n is even,
again xn dominate and if n is even then it is above the axis always and there is no root...But...
She sighs. The tutor then responds:

T: But you see a lot of maths is not about writing down equations but about stating logically
connected arguments... And in fact the fewer symbols you've got written down, the more words...
and especially if you've got to do a [names lecturer and examiner and laughs]... then that's
much better. So what you said was probably right.

Carly silently looks down at her notes and a few seconds later she asks:
C: Well, how do you do it?

Despite the tutor's initial, yet unjustified, approval of Carly's approach and the
generally encouraging tone of her response, Carly is not convinced. The tutor's
philosophical and affective treatment may be seen as not satisfying Carly's cognitive
demand for a response

to the particular question and
to her general metamathematical concern with the 'essay' type of argumentation.

I note here that both Extracts come from tutorials well into the 14-week observation
period (11th and 7th respectively). In the meantime the students have been repeatedly
advised against relying on intuitive arguments and non formal reasoning. So both
Jack and Carly seem to be beyond the stage of relying on empiricism and are now
struggling with their definitions of formalism. In this struggle the semantic formalism
dominating their mathematical experiences of the first months in the course seems to
yield in them the impression that prose is not an efficient tool for presenting, in the
tutor's words, logically connected arguments .The tutor's role here seems to be the
resolving of this misunderstanding. In other words the tutor appears as the cultural
mediator of acceptable manners in the context of formal mathematical
communication.

Tension II: The tension between Proof via Basic Principles and Proof via
Quoting Proved Statements.

Turning to, and at the same time developing suspicion and a slight aversion towards,
verbal explanations was described in the previous section as the novice's state of

4Prove that the equation 1+x+x2/2+...4-xn/n=0 has no real root if the positive integer n is even and precisely one root if
n is odd.
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mind when standing between school empiricism and university formalism. In this
section I point at another tension that goes beyond the semantic and into the heart of
the novices' decision making regarding their reasoning practices: the tension between
employing Proof Via Basic Principles and Proof Via Quoting Previously Proved
Statements. In Extracts 2.1 and 2.2 (and the corresponding figures5) I cite a tutor's
and a student's approach to two questions appearing in the course's weekly problem
sheets. The juxtaposition of the approaches aims at highlighting the differences
between an Expert's and a Novice's approaches to mathematical reasoning.

Extract 2.1
End of Second Term. Pair Tutorial to Students Carly and Charlie. Series and Sequences

The tutorial begins with a discussion of the students' responses to a question6 on the
convergence of some series. The tutor notes that Charlie, for i and ii, and Carly, for iii, have
correctly evaluated the infinite sums by 'splitting them up"7 in two known infinite sums but he
also recommends the more 'formally acceptable' way of doing the same first on the finite sums
and then taking the limit. He then asks Curly to present part iv (see fig. la). He agrees and
suggests an alternative approach (see fig. lb) which, he concludes, is a widely used technique.

(a) Carly's Way (b) The Tutor's Way

I En2/31. = 1 r'r2-1+1/3r = anr- I )(r+1)/3r Note that if

S,,,,=1/2 f(x)= ir''xr = I/1-x, then

=1E`°(r+1)(r- I Y3r+112 f(x) = ir'ntr'l = 1/(1 -x)2 and

= or'(r+2)r/3r+ I +1/2 = 1/3 Irr'r(r+2)/3r + 1/2 r(x)= tr*r(r-1)x" .

= 1/3 Irr'r2/3r + 1/3 11,nr/3r + 1/2 Then by writing 1' in terms of f and 1. and for x=1/3,

213 Ir°12/3r = IE*"2r/3r+1 + in it turns out that 1,r2/3r = 3/2.

= irlTr3r+1 Tr3r+1 +In

= 1 E...T/3r or+I + in
=(1/3-1/9+2/9-2/27+3/27...) +1/2
= (1/3+119 +1127 +1/81...) = 1/2 +1/2

so Er2/3r = 3/2

Figure I

From a topical point of view (in this study topical means exploring the cognition of a
particular mathematical concept) Carly's solution probably generates an interest with
regard to her handling of the series as if they are finite sums. Luckily she escapes
paradoxical situations because the sums she deals with are finite limits. Hence the
liberties she is taking with rearranging the terms turn out to be harmless.

Here however the focus is on the students' reasoning. In Carly's refreshing back to
basics approach, ostensibly, the only piece of previous knowledge she employs is that
E1/3r=1/2. This is however a deceptive appearance since behind Carly's
rearrangements lies the theory that makes them possible. However her approach,

5where I reproduce the solutions presented on the blackboard by students and tutors as duplicated in notes made during
observation.
6Evaluate the following infinite sums, giving reasons for your answers: (i) El/r(r+k), where k is an integer, kal, (ii)
El/r(2r+1 ), (iii)..../+°%41141 (05x51), (ivi Erg /3r.
7e.g. by noting that 1/r(r+k)=1/kr- 1 /k(r+k).
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though not terribly elegant, is pragmatic and straightforward. It has the feel of handy
arithmetic and shows skill and imaginative capacity. On the other hand the tutor's
approach is a formal and elegant shortcut in resonance with the material the students
have been taught at lectures and the techniques they will need. It has the benefit of
hindsight and of globality. It shows an expert handling, an informed awareness of the
facilities available to the craftsman (Exr=ltl-x, letting f(x) be 111-x, calculating f and f' and
noting that r can be written in terms of f and f) as opposed to Carly's decontextualised,
hence slightly primitive approach (writing r2 as r2-1+1, moving ln inside and outside the
several times, etc.).

None of the above is meant to diminish Chrisitna's efficient approach which (the
dangers of naive rearrangement of the terms in a series aside) yields the correct
answer. It only aims at highlighting the inclination of the novice to resort to familiar
(here: handling of algebraic expressions) modes of operating. Similar signs of
prematurity are given in Extract 2.2.

Extract 2.2:
Fnd of Second Term. Pair Tutorial to Students Carly and Charlie. Groups-Rings-and-Fields.

In the same tutorial as in Extract 77.1, a bit later, Carly is invited by the tutor to present one of
her answers on the blackboard8. Slightly reluctant she accepts and warns:
C: Oh, OK but you may not like it!
'Does it matter?' replies the tutor. In fig2a I present her solution and in fig.2b the alternative
solution suggested by the tutor.

(a) Carly's Way Abbreviated (b) The Tutor's Way

Let X=(x), Y:1(y) and t=a(xy). By commutativity she
shows that (xy)XY. Then: XY =mt for an integer m.
Hence: XYN. By commutativity and hcf(X,Y)=I
she shows that t=nXY for an integer n. Hence tXY.
Therefore: t=XY.

He recalls that, in case of commutativity and
hcf(0(x),0(0)=1, 0(sy)=0(s)0(y)/kx>rxy>1 implies
o(sy)(x)o(y) because then <x>rtcy>=(e).

.

Figure 2

Significantly Carly is a bit reluctant to present her solution; given that the incident in
Extract 2.2 follows the incident in Extract 2.1 it seems reasonable to consider the
possibility that Carly begins to suspect that, though correct, her approach is not
exactly up to the standards of elegance and resonance with the material she has been
taught recently. She doesn't say it's wrong or you may reject it. She says: you may not
like it. . Signs of a developing taste for a certain mode of reasoning appear. ,

Similarly to Extract 2.1 Carly resorts to a solid arithmetical handling (to prove that
integers a and b are equal, it is sufficient to prove that as1 and b5a). The tutor on the other
hand employs a theorem and invests the arithmetical relationship given in the
question (hcf(o(x),o(y))=1) with its group-theoretical meaning (<x>n<y>=Iel).

Again the juxtaposition highlights the differences between an expert and a novice
approach. There are some redundancies in Carly's way as well as some unclarified

8Check that if xy=yx in a group, and hcf(o(x), o(y))=1, then o(xy)(i)o(y).
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points - not necessarily visible in the abbreviated version in Fig.2a. Most important
though maybe her starting to conceptualise the need (not merely aesthetic but mostly

-instrumental) for an embedded, contextualised mode of reasoning and for an
organically connected argumentation, in a way which will turn the coherence and
connectedness of mathematical theories to her benefit. In other words via this
juxtaposition of approaches, she might begin learning about the benefits of
mathematical expertise.

Towards a Theory of the Novice's Learning
In the brief discussion of the incidents cited above a flavour was given of the type of
cognitive observations made in the study. In these examples of intimate learning
interaction the tutors seem to hold a key-role as mediators of appropriate cultural
behaviour : they illustrate the power of language in demonstrating a mathematical
argument and they provide refined alternatives to the students' mathematical
arguments. These arguments, verbaUintuitive (Extracts 1.1 and 1.2) and basic/slightly
decontextualised (Extracts 2.1 and 2.2), highlight some aspects of the learners' state
of thinking in the early stages of their studies. Their metamathematical concern about
the validity of these arguments (particularly in Extracts 1.1 and 1.2) can be seen as
signs of an emerging formal mathematical consciousness. A didactical preoccupation
originating in the above is then how mathematics teaching at this level can reinforce
the growth of this consciousness in an informed and systematic way .
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STUDENTS ASSESSMENT
OF AN ALTERNATIVE APPROACH TO GEOMETRY

L Nasser (IM/UFRJ); N. Sant' Anna (Colegio Pedro II); A. P. Sant'Anna (UFF)

Projeto Fundito UFRJ Brazil

An alternative approach to secondary school geometry in Brazil has been
developed, and tested in some schools in Rio de Janeiro, for six years
now. Although the positive results of the former trails in terms of students
performance and teachers approval, we had no idea about the students
opinion. In this paper we describe our proposal, based on the 'Van Hie le
Model of Thinking in Geometry, and the inquiry conducted in order to get
the students assessment of the course. The results show a positive
approval from the students, both in a global point of view, and in each
topic of geometry focused in the 7th- and 8th-grades.

Introduction
The difficulties shown by secondary students in a systematic Geometry course is a

well-known problem, pointed out by teachers and researchers from several countries
along the last decades. Clements and Battista (1992), for instance, claim that:

As we have seen, and belying its obvious importance in the curriculum,
students' performance in geometry is woefully lacking. Neither what
students learn in geometry nor the methods by which they learn it are
satisfactory. (P. 457)

Among the suggestions that appeared to alliviate these difficulties, it seems that
the most investigated and commented one is The van Hie le Model of Thinking In
Geometry (van Hie le, 1986). The van Hie le model suggests that students progress
through a developmental sequence of conceptual understanding as they learn
geometry. Although various aspects of the theory have been investigated, there are still

some controversial issues, such as the discreteness or continuity of the levels (Gutierrez,

Jaime and Fortuny, 1991); the designing of reliable tests to identify students' van Hie le
levels (Usiskin and Senk, 1990); the place of the hierarchical inclusion of classes in the
van Hie le theory (De Villiers, 1987) and the dependence on teaching strategies (Malan,
1986). An overview of the van Hie le model, including the summary of the criticisms and

research carried out, is provided by Clements and Battista (1992).

The van Hie le theory is the framework adopted by our research group in the
attempt to develop an alternative approach to the traditional Geometry course in which
7th- and 8th-grade Brazilian students (13-15 year-olds) are engaged. The activities,
specially designed, have now been tested for six years, with a positive approval from the

teachers. According to the data collected from the first sample, along the subsequent
years of schooling, the students exposed to the experimental treatment overperformed
the ones on the control group (Nasser and Sant'anna, 1995).
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Nevertheless, we did not have any hint about the students opinion about the
approach adopted. Teachers' approval does not indicate for sure that the students also

enjoy the focus given to the course. An inquire to investigate the students point of view
about this dynamic and constructivist way to teach geometry was necessary.

In this paper we describe how the van Hie le theory was used to guide the
development of this alternative approach to secondary school geometry. We also
analyse how students evaluate this approach, according to their answers to a specially
designed questionnaire.

The teaching of Geometry in Brazil
Many researchers have commented about the decline on the teaching of

geometry, all over the world. In the UNESCO book dedicated to the 'Teaching of
Geometry' (Morris, 1986), almost all articles by Mathematics Educators from several
countries point out this decay, as Lange:

... interest in geometry has declined throughout the decades. And, in
secondary school education especially, the lack of interest has so eroded
the subject that it has even disappeared completely from the curriculum 'of
some schools. (1986, p. 59)

Tall (1995) also worried about this, arguing that "the decline of Euclidean
geometry in English schools has led to a loss of experience with systematic proof'
(p. 73), which, in his opinion, may be an obstacle for students' long term development of

creative learning.

In Brazil, the same decline has been noticed in the last three decades. In
particular in the first grades, very few Geometry is taught, and not systematically. As
primary teachers do not have a special training in Mathematics, they, in general, do not
like and do not know enough Geometry to teach it, avoiding this subject.

Geometry is taught systematically at secondary school, in the second half of
grades seven and eight. The approach is very traditional: Euclidean Geometry, with
emphasis on proof, and very few concrete materials are used. Since there is not a
national curriculum in Brazil, there are slight differences from one region to another,
concerning secondary school Mathematics. The differences are rather in the sequence

in which the topics are presented than on the topics themselves. In general, there is no

reference to three-dimensional geometry in the programme. Some special 3-D shapes
appear in the 5th grade programme, as a means to introduce the measurement of
volume of the cube, cuboid and cylinder. The representation of points by coordinates in

the plane appears in the 6th grade programme. But transformations are not taught at all
at secondary school. They appear later in the programme, in some special schools.
Also vectors and matrices are taught only at this higher degree.
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Because teachers have to teach at several schools and various grades, they do
not have enough time to prepare their lessons, and the common practice is to adopt a

book to be followed. So, theory and exercises can be found in the textbook and very
often the number of math's lessons is not enough to cover all the book. As geometry
comes at the end of the textbooks, some topics on geometry can be missed. Some
experimental approaches to Geometry have been suggested by education projects. For

example, the Fundao Project has produced a booklet suggesting the introduction of
Geometry through 3-D solids, which has been used in some schools in Rio de Janeiro
since 1985. According to the teachers, children are more likely to be motivated to study

Geometry with this approach, than with the traditional one, introduced by point, line and

plane.

The alternative course
The geometry course proposed is developed in the framework of the van Hie le

and the constructivist theories. This means that all the activities are designed following

the descriptors of the van Hie le model, respecting the levels attained by the students,

and are to be applied in a constructivist perspective, in which students work in groups,
taking an active role in the learning process.

In our proposal, Geometry is introduced according to the approach mentioned
above, through the 3-D space. At the beginning of the 7th-grade (13-14 year-olds), the

students are tested in order to have their van Hie le levels identified. In general, in a

class, we find students reasoning at the first and second levels, but, in some schools
where geometry has not been taught previously, it is possible to have a great number of

students without level, i.e., who have not reached even the first level. Some special
activities have been designed in order to help students to upgrade their levels, bringing

the class to become more homogeneous (Nasser, 1992).
The topic of congruence of plane shapes is one of the most problematic for 7th-

grade Brazilian students, who are not prepared to reason in a deductive way. In fact,

while the majority of them are reasoning at the first two van Hie le levels, the exercises in

the textbook ask for proofs, using the cases of congruence of triangles (SAS, SSS,
ASA), which requires more advanced reasoning. So, the topic of congruence
illustrates the mismatch between the van Hie le level in which the instruction is given and

the levels really attained by the students, which is one of the causes of the difficulties.
The study of congruence requires reasoning at least at the third level, since the objects

of study are the relations between shapes (Nasser, 1990). Therefore, we propose
activities in which congruence is taught at the third van Hie le level, diminishing the gap
between the van Hie le levels attained by the students, and the one adopted for the
teaching.

In order that the instruction of congruence be kept at this level, deduction and
proof must be eliminated. Transformations are used instead, to justify the congruence of

shapes, through the conservation of shape and size. As Transformations are not
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included in the Brazilian secondary school syllabus, activities about Reflections,
Translations and Rotations have been designed. These activities are developed at the
third van Hie le level, according to the level descriptors for Transformation Geometry
suggested in Nasser (1989). In the didactical experiment to test this material carried out
with the first sample, in 1990, in two schools in Rio de Janeiro, the experimental students

presented better results than the control ones, who followed the textbook (Nasser, 1992).

For the 8th-grade, the enlargement tranformatlon is used to introduce the
concept of similarity, following the same approach. Students deal with the comparison of

shapes and objects, such as Coke bottles, TV and cinema screens of several sizes and
photographs, looking for the necessary and suficient conditions for similarity. This

proposal for the 8th-grade has now been tested for three years in about five schools, and
after some adjustments received the approval of the teachers involved on the trials.

Students assessment
Up to the moment, in order to evaluate the geometry course proposed, we only

worried about the students performance and the teachers approval. Now, we decided it
was time to investigate the students opinion about the course. Students' agreement is
crucial for the success of a didactical experiment (Santos and Nasser, 1995). Informally,

we had the idea that the pupils were enjoying the geometry course, regarding their
behavior in class and their expontaneous presence in extra lessons.

In general, teachers do not pay much attention to students' assessment, arguing
that they tend to evaluate teachers who give good marks positively and underevaluate
the rigorous teachers, who really make them learn. Nevertheless, the use of objective
questions has proved to be a valuable tool to avoid these deviations. Calling students'

attention to the objective aspects of the quality of the course, it is possible to obtain a
reliable global evaluation, as desired.

in order to get the assessment of the course from the students point of view, a
questionnaire has been designed, in terms of comparison with the teaching of other
disciplines. The student is asked to compare, under several criteria, the approach
adopted in the geometry course with the teaching and learning of other topics of
Mathematics and other disciplines. This comparison is made by means of a five steps'
scale, in whiCh students are asked if each topic of the geometry course was Much Worse

(-2), Worse (-1), Similar (0), Better (+1) or Much Better (+2), when compared to the
traditional approach. In order to avoid bias from the students, the questionnaire was
applied at the end of the school year, after the teacher has decided the final marks, but
before these were announced to the students.

The questionnaire was composed of two parts. In the first one, the student was
asked to give a global evaluation of each topic of the course. For the 7-th grade sample,
the topics focused were: geometric solids, transformations, quadrilaterals and
congruence of shapes. For the 8th-grade students, the following topics were included:
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scales, enlargement, similarity and right angled triangles. The second part of the
questionnaire involved four qualities related to the teaching of each topic of the geometry

course. The student was asked to give a mark from the five steps' scale for each topic,
regarding if the way the topic was taught fosters the development of each of the qualities:

I- comprehensive learning

II- upgrading of the van Hie le level;

III- active participation at classroom activities;

IV- students' motivation through the use of suitable resources.

Being aware that the questionnaire was not simple for the students to.answer, the

teacher read it with the class, explaining each item. The 7th-grade sample had 70
students, while 88 8th-grade students answered the questionnaire, at the end of the
1994 schoolyear.

Analysis of the results of the assessment
The global evaluations given are shown in tables 1 and 2. The high percentage

of positive evaluations (better and much better) of the methodology under judgment give

a clear view of the students approval.

Table 1: 7th -grade answers (N =70

Topic Much worse Worse Similar Better Much better

Solids 1 0 1 17 50

Transformations 0 2 1 25 40

Quadrilaterals 0 2 0 17 50

Congruence 1 1 6 25 35

Table 2: 8th -grade answers (N=88

Topic Much worse Worse Similar Better Much better

Scales 1 2 6 36 37

Enlargement 3 1 12 44 26

Similarity 1 2 5 34 45

Right angled

triangle

3 3 2 22 58

It is worth noticing the indications that the approval increases as the students are
exposed to more geometrical concepts through the alternative methodology. This
indication comes from the analysis of the marks given in each topic of the 8th grade
program, as shown in graph 1 below. The large number of "Much Better" evaluation is
reached at the last topic of the program: right angled triangles.
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Graph 1: Final evaluation by subject

The objective items of the questionnaire were designed taking into account a
model for the student's global evaluation, which links this evaluation to his assessment
of the results of the teaching-learning process, by means of the acquisition of the
concepts and of the upgrading of his van Hie le level. These results are, otherwise,
explained in two ways: through the use of suitable concrete resources and through the
increase in the participation of the student in class.

The answers to the questionnaire fit this model, showing that the students
completely approve the methodology adopted in the geometry course, according to the
analysis developed by means of the statistics software STATGRAPHICS.

Graph2 shows the straight relation linking the final appraisal to the evaluation of
the conceptual learning and upgrading of the reasoning level for the 8th-grade students.
Similar results are obtained for the 7th-grade.
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Graph 2: Explanation of final evaluation

72 4 -64



The relationship between the evaluations given in terms of conceptual learning
and its explanatory variables: use of resources and participation in class are Illustrated
by graph 3. Analogously, graph 4 shows the relationship between the evaluations in
terms of upgrading the reasoning level and the same explanatory factors. Both graphs
are built on 8th-grade data; the data of the 7th grade follow the same pattern.
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Conclusions
The analysis of the answers shows that the great majority of students evaluate the

approach given to all the concepts as better or much better than the traditional one.
There is high coherence between the global evaluation and the assessment by

means of concept learning and the upgrading of the van Hie le level, which indicates the
students' satisfaction with the course.

High coherence is also found between the marks given to concept learning and
reasoning level, by means of the active participation in class and the use of didactical
resources. The presence of these components in the methodology used can be
associated to the better results of learning, and corroborates the coherence of the
students' answers.
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SOLVING WORD PROBLEMS WITH DIFFERENT MEDIATORS:
HOW DO DEAF CHILDREN PERFORM?

Terezinha Nunes and Constanza Moreno
Institute of Education, University of London'

We investigated the acquisition of the signed algorithm by sir profoundly deaf primary
school children and the effect of different mediators objects versus the signed
algorithm on their word problem solving performance. Similarly to the acquisition
of the written algorithm by hearing children, deaf children's calculation errors with
the signed algorithm could be attributed to the structure of the numeration system
operated on. Results of the problem solving tasks indicated that the children
performed significantly better when using objects than when using the signed
algorithm, and that this difference could be explained by the formalization involved in
the use qf the algorithm. Level of problem difficulty followed the same pattern
documented for hearing children.

Several studies (e.g. Nunes, Schliemann, and Carraher, 1993) demonstrate that

the type of system of sign used to mediate reasoning in mathematics significantly

influences subjects' problem solving performance. Thus it is important to analyse a

variety of systems of signs which are used in school in the teaching of number

concepts. We investigated the use of signed numbers (see Figure I) as mediators for

deaf children's development of additive strutures. Signed numbers are used by some

children in a procedure we will refer to as "signed algorithm". The algorithm

involves simultaneously signing each of the numbers in an addition or subtraction sum

with a different hand for example, one hand signs 8 while the other signs 7 when the

pupil wants to solve 8 + 7. Increments of one are then added to 8 (the value, to be

operated on) at the same time as 7 (the value of the transformation) is progressively

decreased by one. The result is achieved when the hand signing the transformation

reaches 0; it will be read on the other hand, which works as the notepad. In a

subtraction problem, the minuend is signed with one hand, the subtrahend with the

other, and they are both decreased by one until the subtrahend reaches 0.

I This project was supported by grants from the Institute of Education and the Child
Development and Learning.
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Figure I: The signed numbers used by the children in this study

7

\A7

The use of signed numbers has hardly been investigated so far. A notable

exception is the work of Secada (1984). When he matched hearing and deaf children

for age, deaf children lagged behind their hearing counterparts in the acquisition of

counting. However, when they were matched with respect to their counting range,

Secada found no difference between the hearing and the deaf children's use of counting

to answer questions that required the use of counting. In spite of the similarity in

performance, the two groups of children made different sorts of errors, which were

closely related to the counting system they were learning. Deaf children's errors

reflected the double-base of their system, which changes rules at 5 and 10, whereas

hearing children did not make the same sort of mistake.

When hearing children use their fingers during problem solving, their fingers

are representations of the objects; in this case, it is possible to perform on the fingers

actions which do not correspond to arithmetic operations - for example, to count from

a to b to solve a missing addend problem or to compare 4 and 5 fingers by setting

them into spatial correspondence. As Marton and Neumann (1990) have pointed out,

children can solve some addition and subtraction problems using their fingers before
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they can indicate which operation would be needed to solve the problem. In contrast,

when deaf children use their fingers in the signed algorithm, the fingers represent

numbers rather than objects, and a formal representation of the solution is required;

the operation to be performed must be decided from the outset. We were thus led to

predict that the deaf children would perform significantly better in problem solving if

they were allowed to use objects to solve the problems than if they had to rely on the

signed algorithm. Their errors reflect the need to formalize the problem solution

rather than lack of understanding of the problem situation.

Due to the paucity of studies on the signed algorithm, we had several aims in

our study: 1) to describe the difficulties in mastering the signed algorithm; 2) to

contrast the children's performance in two types of problem solving condition, one

where they relied on the school-learned procedure to calculate solutions and a second

condition where they could use objects to solve the problems; and 3) to describe the

level of difficulty of different problem types.

Method

Subjects: Six profoundly deaf primary school children (age range 6 to 8

years;' mean age 7.23), users of Sign Supported English, attending a London primary

school for the deaf participated in this study. Only one child had deaf parents.

Design: The study was conducted in two phases. In the first phase, the children

were first video-taped in the classroom during six mathematics lessons taught by a

specialist teacher. The main aim of the lessons was to teach the signed algoiithm.

During each lesson, two children were focused on, yielding a total of two sets of

observation per child. These records were used to describe the difficulties of

acquiring the signed algorithm.

In the second phase, the children were interviewed individually in three sessions.

In the first session, the children answered addition and subtraction sums. Those sums

which were solved correctly by at least five of 'the six children were chosen for use
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in the word problems. This choice of easy sums allowed for a better analysis of the

impact of the means of representation on problem solving because we could elimintate

the possibility that failure in a word problem resulted simply from not knowing how

to carry out the sums. In the second and third sessions, the children solved a total of

16 addition and subtraction word problems presented in random order. In session two

the children could use manipulatives (cut out figures representing the objects) to solve

the problems whereas in session three they were asked to use the signed algorithm.

Considering that changing mediators within a session was not practical, a fixed

order for the conditions of testing was used with objects as mediators in the first

session because this choice would not favour our expectation of better performance

with objects than with the signed algorithm. The sessions were about one week apart.

Procedure: The sums in session one were presented both in Signed English by

an expert signer (the second author) and written in arithmetical notationon cards; the

children signed the result. The word problems were presented in Signed English, and

repeated as often as needed to ensure that the children understood the situation.

Results

1 Difficulties in mastering the signed algorithm

Although the description of the signed algorithm suggests a straightforward

process, our analysis of the video-tapes of the children's learning processes indicated

that the calculation procedure is complex. The four types of error identified can be

traced to the operations on the mediating signs.

First, the children need to distinguish fingers as coun ble objec 11 '1.

as signs for numbers. When manipulating countable objects in a subtraction, for

example, it does not matter which objects are removed first. When using the finger

algorithm, it does matter which fingers are retracted in which order. For example,

when counting down from 8, if instead of retracting the middle finger the children

retract their thumb, they go from 8 to 2 instead of 7 (see Figure I).
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Second, the children need to become experts in counting-down with their

fingers, a necessary skill for both addition and subtraction in signed algorithm. Three

types of count-down errors were observed.

a) Failure to "carry the five" may occur when children count down from

numbers above 5. If they forget to carry the five, a confusion between 5 and 0 results.

b) Failure to "carry the ten" may happen when numbers above ten are involved

in calculation. There are two common ways of signing numbers in the teens (either by

successive signs indicating one-zero and the number of units or by signing the number

of units while shaking the hand) and both involve some memory processes. Failure

to "carry the ten" results in confusing, for example, 14 and 4 or 13 and 3. Failure

to "carry the five" and "carry the ten" were observed in five of the six children.

c) "Skipping 5" may be observed when the children count down from a number

above 6. The thumb must be retracted twice in succession, once going from 6 to 5,

and then again counting down from 5 to 4. This type of error was only observed in

the most inexperienced child and even in her case it was not frequent.

A third difficulty of the algorithm relates to the need to distinguish the number

operated on (signed by the hand that works as the pad) from the value of the

transformation being carried out (signed by the active hand). If at any point during the

calculation process the children forget which is which, they reverse the progressive

transformations, obtaining the wrong answer. This error was observed in two children.

A fourth source of difficulty was related to a specific teaching choice made by

the teacher. Her aim was to get the children to realise that it is more efficient to use

the larger addend as the number to be operated on irrespective of where it appears in

the sum. She thus inverted the order of the addends when the smaller one appeared

first and some children seemed to become confused. This inversion in the order of

addends requires that the children understand the commutativity of addition. Although

the most skilful child in the group had no difficulty in changing the order of the
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addends, all others made some errors when the order of addends was changed.

In short, the signed algorithm cannot be learned by the simple copying of

gestures. Children need to understand the algorithm and master the difficulties related

to the structure of the counting system. However, we wish to point out that the signed

algorithm also has advantages: it allows the deaf children to mediate and control their

computation processes rather than leaving computation to the mercy of their ability to

recall verbal number facts, an advantage that was documented by Moreno (1994).

2. Differences across testing conditions

The children's performance in the two problem solving conditions differed

significantly. The mean number of correct responses for the problems solved with

objects was 9.45 whereas the mean number for the problems solved with the signed

algorithm was 1.98 (p< .001 for a two-tailed t-test for correlated samples). This result

supports the hypothesis that different mediators affect children's reasoning during

problem solving.

Further analysis was carried out in order to investigate whether it was the need

to formalize the route to problem solving when using the signed algorithm which led

to the decrease in the children's performance. If this is the case, one would expect

the difference between the two problem solving conditions to be significant only when

the actions carried out with objects to solve the problems do not correspond to the

formalization in terms of arithmetic operations, yielding a pattern of non-significant

differences for direct addition and subtraction problems and significant differences for

the other sorts of problem used in the study.

The predicted pattern was observed in a general fashion. There was no

difference in the children's performance when the direct problems were considered:

only one child made a mistake in one of the three direct problems using the signed

algorithm and another made one mistake with the objects. In contrast, significant

differences were observed when the actions carried out with objects to solve the

80 4-72



problems do not correspond to the formalization in terms of arithmetic operations. In

the equalize problems, the children performed rather well in the object condition

(mean = 3.6 correct over 4 problems) but rather poorly in the signed algorithm

condition (mean = I); the difference was significant at the .012 level (two-tailed t-test

for correlated samples). A significant difference was observed also for missing

subtrahend problems, which children solve with objects by building a set, counting out

the objects which are said to have remained, and then counting out the objects which

"were lost" in the story: the mean number of correct responses was 1.7 (in two

problems) in the objects condition and 0.2 in the signed algorithm condition, a

difference that was significant at the .001 level (according to a two-tailed t-test for

correlated samples). The inverse problems (missing addend and missing minuend)

were rather difficult for the children in both conditions: the mean number of correct

responses was 0.2 (in three problems) for the objects condition and 0.1 for the signed

algorithm condition. Because of the floor effect, no significant difference can be found.

In short, the comparison between the children's performance in the two

conditions indicates that the different mediators affect the children's reasoning. This

finding is significant for the education of deaf children because their performance was

rather good in word problems when they could use their informal reasoning strategies.

This result contrasts with previous findings that indicated that deaf children are poor

solvers of word problems. Perhaps the reason for their failure in word problems in

other studies results from an interaction of the problem presentation (problem4 were

presented only in English whereas we used Signed English) and the need for the

children to use written procedures, which, like the signed algorithm, are based on the

formalization through the choice of an arithmetic operation.

3. Pattern of development in solving additive reasoning problems

The preceding comparisons indicated that deaf children's progression through

word problem solving is clearly similar to that observed among hearing children:
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direct and equalize problems are easiest, followed by missing subtrahend, and then

inverse problems when objects are available. Comparison problems were not included

in this study because Moreno (1994) had observed a floor effect for deaf children of

this age level. This result suggests that it is the need to perform more operations of

thought in solving problems that increases their difficulty rather than the particulars

of the linguistic form used in the word problem, because Signed English uses different

resources in the presentation of the same problems to children than does English.

Conclusions

This study demonstrates in a new way that the systems of signs used during

problem solving affect reasoning. Deaf children's errors with the signed algorithm can

be traced directly to the structure of the counting system and the algorithm used, just

as the errors observed among hearing children can be traced to the numeration system

and the mechanics of the written algorithm. Further, the same children solving

problems with different sorts of representational support perform significantly

differently. This shows that it is not the children's deficiency of comprehension but

their difficulty with formalization that results in poor performance when solving certain

classes of problems. Finally, the results indicate that deaf children's progression

through the conceptual field of additive transformations parallels that of hearing

children, even if they might, for a variety of reasons, lag behind.
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TELLING DEFINITIONS AND CONDITIONS:
AN ETHNOMETHODOLOGICAL STUDY OF SOCIOMATHEMATICAL

ACTIVITY IN CLASSROOM INTERACTION

MINORU OHTANI
Faculty of Education, Kanazawa University, JAPAN

This ethnomethodological study investigates how sociomathematical activity in a seventh-grade
classroom is constructed and sustained. The following discussion consists of two parts. First part
involves an indiCation of the theoretical framework and the justification for the methodology used. In
the framework, sociological constructs, such as participation rights and politics of representations are
taken as objects for analysis in which mathematical constructs, such as definition and condition play
methodological units. The second part involves description and interpretation of episodes that
occurred during a year long classroom participant observation. Analysis of transcripts of records
reveal that telling definitions and introducing conditions function as social resources widely used to
sustain privileged participation rights and to dominate particular mode of representation.

INTRODUCTION

The investigation has been influenced by the theoretical underpinnings of
ethnomethodology (Garfinkel, 1969; Leiter, 1980). Central to its formulations is
the notion that reality is implicitly but deliberately constructed by member of a
social group. Ethnomethodology investigates member's methods of creating and
using sociological constructs, patterns of social interaction such as the famous
triadic "initiation-reply-evaluation" (Mehan, 1979), and member's accounting
practice to attain the factual character of the social reality (Ohtani, 1983).

In mathematics educational research, ethnomethodological and related
interactionist analysis of mathematics classroom detected several specific patterns of
social interaction such as the "elicitation pattern" (Bauersfeld, 1994); "funnel
pattern", "staging pattern", and "thematic pattern" (Voigt, 1995). These research
showed how teacher and students elaborate and use these patterns in the course of
social interaction. Resent research envision mathematical aspects of interaction
such as the "sociomathematical norms" (Yackel, 1993; Voigt, 1995) and
"mathematical rationale" (Kumagai, 1994).

This article focuses on another aspects of "sociomathematical" interaction. The
following discussion consists of two parts. First part 'involves an indication of the
theoretical framework and the justification for the methodology used. In the
framework, sociological constructs, such as participation rights and politics of
representations are taken to the study of classroom mathematical activity in which
mathematical constructs, such as definition and condition play analytical units. The
second part involves description and interpretation of an episode that occurred
during a year long participant observation in a Japanese seveittb4rade classroom.

UJ
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THEORETICAL FRAMEWORK

ASPECTS OF SOCIOMATHEMATICAL ACTIVITY
Resent research (Bauersfeld, 1994; Cobb, Wood, Yackel, & McNeil, 1992;

Lampert, 1990) have a common and persuasive vision of mathematics classroom as
socioculturally mediated milieu. Different classroom cultures mediate different
values with respect to classroom interaction, and with respect to mathematical
activity. In everyday classroom practice, teacher and students coordinate the extent
to which they participate in a.particular mathematical activity. The members role
in participating mathematical activity, the extent to which they take direct
responsibility, and innovation of certain discourse type varies across classroom
practices. In this regard, activity in mathematics classrOOm is referred to
"sociomathematical". In this study, two sociological constructs which are related
with sociomathematical activity are taken as objects for study. These involve
"participation rights" and "politics of representations".

PARTICIPATION RIGHTS
Sociological studies on classroom organization illustrate some systematic patterns

in teacher student interaction. These interactional patterns are seen as patterns of
distribution of participation -rights allocated for teacher and students. Teacher's
action such as individual nomination, invitation to bid, and invitation to reply are
seen as natural methods of transferring rights to the students. And, to raise ones
hand is seen to get his/her rights to innovate speech. Likewise, interrupting another
speech means authoritarian act of invading ones rights. In this regard, classroom
sociomathematical activity can be characterized as patterns of distributions and
assertions of rights to participate and accomplish mathematical practice. Such
distribution pattern of rights is called "mathematical participation structure"
(Ohtani, 1994a).

POLITICS OF REPRESENTATION
Events and objects are vague-and ambiguous. The choice of a particular way of

representing events gives them a particular meaning. There is often a competition
over the correct, appropriate or performed way of representing objects and events.
Proponents of various positions in conflicts waged in and through discourse attempt
to capture or dominate modes of representation. The competition over the meaning
of ambiguous events and objects in the world has been called the "politics of
representation" (Mehan, 1993).

In educational research, a similar competition among representations were
investigated: decision of learning disabled child (Mehan, 1993); reading (Minick,
1993); science teaching (Wench & Toma, 1995); mathematics teaching (Ohtani,
1993). These studies commonly illustrate that one mode of representing the world
gains primacy over others, consequently a hierarchy among modes of
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representations is formed. It is tenable that a similar competition over the meaning
of events and objects is played out in everyday mathematics classroom discourse.

DEFINITION AND CONDITION AS ANALYTICAL UNITS
In search of theoretical constructs that will provide analytical units to investigate

participation structure and politics of representation, I shall draw on the works of
Lakatos (1976) and Wieder(1974).

As Lampert (1990) observed, Lakatos portrays historical debates within
mathematics about what a proof of a theorem represents by constructing a
conversation among a group of students that contains mixed within it many
axiological belief system, conceptual horizon among mathematicians over last
several centuries. In the conversations, Lakatos demonstrated how new knowledge
develops in the discipline with proof following a zig-zag path starting from
conjectures and moving to the examination of premises through the use of counter
examples or refutations. In the midst of an argumentation, revised definitions and
conditions are progressively introduced in light of refutations. It seems that
formation and revision of definitions and introducing conditions are indispensable
and essential components that constitutes mathematical activity.

However, relative differences between social and psychological life of
mathematicians and students need further consideration of aspects of formulating
definitions and introducing conditions in institutional settings. In this regard,
Wieder's study on "convict code" in a halfway house (Wieder, 1974) gave insight
for the development of analytical units..In his participant observation, Wieder
found that convict code not only serves as moral order that residents should
observe but also serve as interpretive cognitive framework for staff to explain
residents' deviant behavior. Further, he depicted that convict code operates as a
devise for urging or defeating a proposed course of action, a devise for legitimately
declining a suggestion or order.

DESCRIPTION AND INTERPRETATION OF EPISODE

DATA COLLECTION
The episode I shall examine here comes from a seventh-grade classroom (with

thirty two students) in a junior-highschool located at Tsukuba city, Japan. A year
long participant observation starts April 1993, when the author enter the class as
teaching assistant. Every lesson, three times a week, was audio-video taped for
later analysis. These records are transcribed and utterances and nonverbal behavior
are attributed to speakers and numbered for ease of reference.

DATA ANALYSIS METHODS
Microethnography or "constitutive ethnography" (Mehan, I979) was adopted for
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data analysis strategy. This strategy is characterized as "structuring structures"
(Mehan, 1979). The constitutive ethnography studies both recurrent patterns of
interaction occurring in classroom and members' methods of structuring activity
that results in these patterns. A comprehensive analysis of the entire corps of data
generates a provisional scheme of interaction. The scheme is constantly confronted
by discrepant cases until the researcher has derived a candidate recursive pattern.
In order to insure that the recursive pattern or structure uncovered by the
researcher converges with that of the participants, I adopt the research strategy that
is analogous to "breaching study" (Garfinkel, 1967). This methodological
procedure consists in observing participants actions where normal circumstances
are disrupted. The interactional work become visible when normal circumstances
are disrupted. In a disruption, people engage in recovery work to reestablish the
normal patterns of interaction. This recovery work displays and informs what is
normally hidden interactional work that accomplishes normal forms of interaction.

RESULTS
In the course of analyzing huge amount of data corpus, I found that mathematical

definition and condition operate as social and multi--consequential devise for
coordinate and sustain classroom social interaction.

PARTICIPATION RIGHTS
I shall outline an episode that will provide some illustrations of pattern of

interaction with regard to mathematical conditions. In the beginning of a lesson,
teacher assign a task to concerning to elaborate a convenient way to calculate mixed
addition and subtraction of positive and negative integers. The teacher invited
students to propose six integers arbitrary. In the following excerpt, the teacher and
students are designated by T and SS, and individual student is designated by his/her
initial.

#01 T : Hey, you. [points to KNI
#02 KN : Minus three.
#03 T : [writes the numbed Next. [points to HNI
#04 HN : Minus three.
#05 T [writes the number and points to MNI
#06 MN : Minus one.
#07 T 'writes the number and nods to KEI
#08 KE Plus one.
#09 T : Huh? <2> 'with a puzzled look I You're going to//
#I0 SS : Yeah! Yeah! (many talking out'
#11 T : [points to HKI
#12 HK : Plus ten.
#I3 SS : lgigglingl
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#14 T : How come (e..)? <2> 'loudly' What! What's the matter? 'points to an
#15 OT : Minus ten.
#16 SS : [laughing'
#I7 T : 'introduces operations: (-3) -1-(-3)(-1)(-1)(+10) +(-10)1
#18 OT : Damn you.
#I9 HG : Damn you. Why? Malicious! Malicious!

In the transcripts, the teacher successively nominate students and the students
propose integers. The students, however, successively propose quite simple and
trivial integers whose absolute values are the same (#02, #04, #06, #08). The
teacher implicitly suggests students that their proposals are irrelevant (#09).
Students none the less welcome simple number combinations (#10) and propose
further trivial integers ( #12, #I5). This means that normal circumstances are
disrupted. In such a disruption, the teacher introduces arithmetical operations to
reestablish normal patterns of interaction (#17). I observed that, in his recovery
work, introducing conditions (arithmetical operations) serves as a means to defeat
students ideas and proposals and to suggest appropriateness of integers student
should propose.

POLITICS OF REPRESENTATION
The following episode will provide an illustration of politics of representation

with regard to mathematical definitions. The students are working on linear
equation using balance beam. The problem is as follows.

In a balance beam chocolates and candies are leveled.
There are three chocolates on the left side and six candies
on the right side. How many candies are leveled to one chocolate?

The teacher nominated a student (SH) and ask him to show his solution. SH
proceeded to the board and manipulated concrete objects. He removed one
chocolate from the left side and two candy from the right side and arrived at an
equality of two chocolates to six candy. The episode begins as they start to work on
the equality.

#01 T : There are six candies. Now we need the number of candies to a chocolate.
#02 It's easy to find that the answer is tree (candy), because there are six
#03 candies for two chocolate. Can you tell us about what you did? What did
#04 you do?
#05 SH : 'no response'
#06 T : Look this. 'pointing to a list of the equivalent transformation simplify-
#07 cation procedures' Which one did you use? This one 'multiply both side'
#08 or that one 'devise both side'? Which one'? Divide both side .... or

4 -79
i



#09 multiply?
#10SH : Multiply.
#I1 T : Multiply. What do you multiply both side. <2> To both side, what do you
#12 multiply?
#13 SH : Same number.
#14 T : Huh, the same number. Now, tell us what's that.
#15 SH : Two.
#16 T : Multiply by two? Um. <3> If you multiply two, what are the results.
#I7 SH : Four (....) din audible)
#18 T : Four X. <2> And this side.
#19SH (....) din audible'
#20 T : What?
#2I OT : Twelve.
#22 T : It's twelve, isn't it. But, you see, equation is, <2> you see, this is a
#23 equation with unknown X. Okay? <2> In sum, to solve an equation, ...

#24 What we should do? A solution of an equation is <2> is transformed into
#25 "X equals to" <3> Shh! Guys shut up! [loudly/ "X equals to something".
#26 Then, the solution must be in the form "X equals", or "one chocolate
#27 equals to." Now we have arrived that two chocolate equal to six candies.
#28 Isn't it a reverse procedure if you multiply two to the both side? <2>
#29 You see we have arrived that two chocolate equal to six candies. We
#30 should transform to "X equal". What do you do. What number to
#31 multiply?
#32 SH : X (....) (in audible]
#33 T : Multiply by X? <2> If multiply X by X, then what's the result?
#34 SH : Ino response'
#35 T : To the power of?
#36 SH : (Two)
#37 T : X squared. It isn't correct. Tell us what number do you multiply?
#38 SH : 'no response'
#39 T : Um, um. Okay, let me ask the question to somebody. Huh, [points to STI
#40 ST, are you ready to join? Can you tell me what you did.

In the transcripts, the teacher expect the student SH to use equivalent
transformation simplification method (#01-#04). The student SH, however, did not
respond to the teacher (#05). The teacher again ask SH which equivalent property
can be used (#06-#09). He replied wrong answer (#I5). Here the expected
interaction wad disrupted. The teacher implicitly suggested that his answer are not
correct (#I6). In such a disruption, the teacher told formal definition concerning a
solution of an equation in order to reach expected solution (#22431). The student
SH none the less present wrong answer (#32). The teacher eventually employed
most powerful and common method that is to nominate excellent student to reach



correct solution (#39-#40).
In this episode, it seems that the teacher and the student SH have been guided by

different situation definitions. The teacher represent the situation in terms of
mathematical notion of equation-solvig procedures such as the equality relation and

system properties. The student SH, however, represent the situation in terms of
vernacular and everyday knowledge of balance beam, chocolate, and candy. An
inspection of the protocol shows that telling formal definition serves as a means of
privileging decontextualized formal representation over contextualized vernacular
representation of balance beam.

DISCUSSION

SOME FEATURES OF TELLING DEFINITION AND CONDITION
Analysis of the episodes shows that telling definitions and introducing conditions

function as social resources widely used in order to sustain privileged participation
structure and to negotiate certain representation of problem situation rather than

cognitive resources used to analyze and describe problem situation and to construct

mathematical dialogue.
Condition functions to regulate students' mathematical activity in ways that are

appropriate for the classroom setting. And by introducing condition the student
engages in a process sanctioned and regulated by the teacher. Condition becomes

directive of imperative which he is expected to follow.
Definition functions as a strong implicit message that decontextualized mode of

representation should be privileged, even if another mode could be used to describe
an objects or event more appropriately and usefully in activity settings. Thus, in
place of diversity or heterogeneity, telling mathematical definition designs to get
the student to participate in formulating the problem in particular way.

In sum, telling mathematical definitions and conditions are much more a method
of moral persuasion and justification that involve the following social functions: to
sanction and defend unexpected or insignificant interaction with students; to defeat
students ideas and proposals; to justify teachers control over students; to attain a
degree of uniformity of what it transmits, and so on.

CONCLUDING REMARKS

The study showed that telling definition and condition create a social reality for
students and showed some of the way in which telling definition and condition was
persuasive and consequential. However, the investigation itself raised several
additional questions to show how telling definition and condition was productive of
a social world of real events and to show how talk could be heard as telling
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definition and condition. These questions require a closer look at experience of
students than ethnographic reportage of it. It require a turn from a description of
events and objects which were experienced by the ethnographer to a description of
the course of experiencing those occurrences as events and objects.
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MAKING SENSE OF CHILDREN'S PATTERNING

Jean Orton and Anthony Orton, University of Leeds, U.K.

Different types of pattern questions were given to over one thousand 10-13 year olds.
Correlations between the different types - strings, cycles, tables, linear and quadratic
- were found to be high. Information from individual interviews was used to inform
the analysis. Stages, tracing progress through the linear questions, were suggested
for the responses and were found to conform to a Guttman scale. Levels, based on
qualitative considerations, were more appropriate for the quadratic questions and
were compared with the levels of the SOLO taxonomy.

Rationale and previous research

Over recent years, patterning activities have become a feature of the
mathematics curriculum, and attempts have been made to measure the effect and value
of such experiences in quality and amount of learning. To what extent are children
able to perceive, understand and use patterns in generalizing, in coming to terms with
algebra, and in problem solving? As a result of their monitoring of mathematical
performance from 1978 to 1982, the APU (undated) wrote that: "finding terms in
number patterns gets progressively more difficult the further the terms are from those
given in the question; more pupils can continue a pattern than can explain it; number
pattern rules are described by a large proportion of pupils in relation to differences
between terms; and generally, oral explanations of rules ... are given by more pupils
than can write an explanation". Lee and Wheeler (1987) used both linear and
quadratic patterns with students aged 15 to 16. They suggested that two kinds of
students were successful, namely those "who hit upon a usable pattern perception and
pushed it through", and those "that were flexible in pattern perception and could see a
new pattern when one was unproductive". Stacey (1989) used linear generalizing
problems with students aged 9 to 13. As well as documenting student methods she
reported that "the constant difference property was widely recognized and could be
used by a large majority" to move from one term to the next, and also that it was
common to find students who moved "from a correct linear model to a direct
proportion model for harder parts of a question". Pegg (1992) reported on three
studies, for all of which the major innovation was the adoption of the SOLO taxonomy
of Biggs and Collis (1982) as the theoretical perspective. Redden (1994) described a
study based on linear generalizing problems in which, again, the SOLO taxonomy was
used as a theoretical framework for interpreting the data. Our work sought to explore
pupils' responses to a wide range of pattern questions. What patterns are noticed by
pupils? To what extent can stages or levels be used to classify pupils' patterning
ability?

Test items and responses

A written questionnaire was used with 1040 pupils from Years 6, 7 and 8 (ages
10-13). Thirty of the children were also given individual interviews and asked, for
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each task on the questionnaire, how they had obtained their answer. The conclusions
discussed herein are based both on the written responses and on an analysis of the
interview data. The final version of the questionnaire, adapted from that used in a
pilot experiment (Orton and Orton, 1994) contained five types of questions, referred to
subsequently as strings, cycles, tables, linear and quadratic. In this paper the question
numbers in [ ] brackets indicate position on the questionnaire.

Strings, Cycles and Tables

There were five strings, for all of which students were requested to "fill in the
next number", for example [1] 1 3 5 7 and [4] 1 2 4 8 16. Performance
was generally good on strings, yet [4] proved to be at least as difficult as the cycles
questions: The pupils' responses clearly indicated that differencing was automatic,
and for some was the only strategy available. Two examples of cycles ([6] and [15])
are provided here. The questions required pupils to "fill in the missing numbers
(shapes, letters)", and facilities were high. The questions referred to as tables were all
structurally quite different from each other, and again pupils were asked to "fill in the
missing numbers". Question [12] is given as an example. The data obtained from the
strings, cycles and tables were used in the subsequent analysis, but space precludes
any detailed discussion of the results and the nature of the responses.

2 4 6 8

[6] 2 3 4 [15] a b d [12] 2 4 8 2

2 3 1 b c a 4 8 4

3 4 1 c d a 6 2 4 6
2 a 8 2 8 4

Linear

The two items in this category were based on linear functions. Each item
included a number of questions based on a particular problem situation. Such items
have been referred to as superitems in some of the literature (Collis, Romberg and
Jurdak, 1986). The two problem situations were:

[16] A bicycle hire firm charges £2 per hour to hire bicycles.
How much will it cost to hire a bicycle for ... hours ?

[17] Bobby has just got a new job selling encyclopedias.
His basic wage is £16 per week but he gets a bonus of £5 on top of this
for every set of encyclopedias that he sells.
In a particular week he sells ... encyclopedias. How much was he paid ?

The questions required students to state the cost (wage) for 1, 2, 3, 4, 5, 6, hours
(sets), for 20 hours (sets), for 100 and for n. Students were also asked to explain how
to work out the cost from the number of hours (wage from the number of sets), before
going on to deal with n hours (sets). The results are shown in Table 1.
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Table 1 : Facility levels (percentages correct) for Linear Questions [16] and [17]

[16] / [17] Next few 20th 100th nth
Year 6 95.2 / 68.3 89.0 / 56.8 74.5 / 47.5 1.4 / 0.7
Year 7 95.7 / 69.3 89.1 / 52.3 79.2 / 41.7 10.4 / 7.0
Year 8 97.7 / 79.6 94.1 / 69.9 87.8 / 62.1 25.6 / 19.4

Quadratic

The quadratic questions, [9], [10] and [11], were all based on the three
sequences, A, B and C respectively, marked on the triangular array of numbers:

5

0 11

8 19

2. 7 28 29
7 38 39 40 41

6
12

20
30
42

7 8

13 .14 1

21 22 23 2
31 32 33 34 3

43 44 45 46 47

Each number sequence provided the basis for a superitem, as follows:

Write down three things you notice about the numbers in the loop.
If there were more rows of numbers in the triangle, what number would come
next in the loop?
What would be the 20th number in the loop?
What would be the 100th number in the loop? Can you see a simple rule for
working it out, and if so, what is it?
What would be the nth number in the loop?

In general, the quadratic questions proved very difficult for the children. About
half of the pupils managed to give the next number in each loop, but the many
arithmetical errors reduced the facilities for the 20th and 100th numbers, and few
could cope with the nth term. Over half of all pupils omitted the question about a
simple rule for Loop A and this rose to about 80 per cent for Loop C. As in Question
[17], facilities for Year 6 pupils were sometimes higher than for Year 7, but these
differences were not significant. The written responses to what was noticed in each
loop show that many children focused on the differences between successive terms or
described what was noticed in..terms of addition. The alternate pattern of odd and
even numbers in Loops A and C was also widely noticed.

Table 2 : Facility levels for the Loop A / B / C Quadratic questions

A / B / C Next 20th 100th nth
Year 6 46.9 / 45.9 / 45.5 4.1 / 3.4 / 0.0 4.1 / 0.7 / 0.0 0.0 / 0.0 / 0.0
Year? 45.7 / 52.0 / 36.6 16.2 / 3.8 / 0.5 12.4 / 1.8 / 0.2 4.1 / 0.7 / 0.2
Year 8 64.4 / 61.3 / 45.9 28.2 / 14.0 / 2.3 21.3 / 8.8 / 0.9 15.4 / 7.2 /2.5
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Correlations

As well as a total Score for the whole questionnaire, five separate scores were
obtained for Strings, Cycles, Tables, Linear and Quadratic. A matrix was then
obtained, showing correlations between these six scores and Age:

Strings
Cycles
Tables
Linear
Quadratic
Score

Age
0.242
0.099
0.099
0.230
0.236
0.248

Strings

0.260
0.270
0.420
0.364
0.568

Cycles

0.369
0.328
0.268
0.612

Tables

0.332
0.314
0.722

Linear

0.467
0.761

Quadratic

0.702

[All correlations were highly significant (p < 0.002, n = 930)
Data was not used for pupils who did not complete the paper.]

Although some correlations are more significant than others, it is enough to record that
these values confirm relationships between all pairs of scores. There are no surprises
here. Basically, children who are competent on one type of pattern are also competent
on the other types.

It was decided to pursue the analysis further, and to use factor analysis to see if
it exposed any useful further information. However, the Kaiser-Meyer-Olkin measure
of sampling adequacy proved to be too low (Norusis, 1990), at 0.293. By removing
the variable Score all the remaining variables had suitable measures of sampling
adequacy (close to 0.8), and a high value was obtained for the Kaiser-Meyer-Olkin
statistic. The procedure was continued with a Principle Components analysis. Only
one factor produced an eigenvalue greater than 1.00 (41.3% of the variance), and thus
Varimax Rotation was not applicable. This factor appears to represent overall
patterning ability, perhaps not surprising, with the highest loading on Linear. Thus
the factor analysis did not provide much additional information, but nor did it produce
any unexpected or embarrassing surprises.

Stages and Levels

Several attempts were made to investigate stages in the development of
patterning ability. An earlier study reported in Orton and Orton (1994), had revealed
that the capabilities of adults answering quadratic pattern questions in an examination
situation could be classified in stages. The four questions which made up the
superitem in that earlier study involved stating the next, 10th, 50th and nth term in a
sequence based on dot patterns. If a student was able to answer a particular question
they were always able to answer all the previous questions, and thus the stages of
development were:
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Stage 0 I 2 3 4

No
progress

Next term
provided

Next and
10th terms

Next, 10th and
50th terms

Next, 10th,
50th and nth

This was a deceptively simple classification which proved difficult to apply in the
present study. It was not always the case that a correct 100th term had followed a
correct 20th term and it was difficult to know what to do with pupils who provided a
satisfactory response to the nth term but who had not provided a correct 20th or 100th
term or both. This led to subdivisions of the stages to cover all the possibilities, using
the letters t, x and y to indicate errors in the next, 20th or 100th terms respectively.
Thus a child who gave the correct 100th term but the wrong 20th was classified as at
Stage 3x, while a pupil who provided the correct 20th but not the next term was at
Stage 2t. Other subdivisions were used at Stage 4:

Stage 4a A correct verbal statement,
Stage 4b A creditable attempt at an algebraic expression,
Stage 4c A correct algebraic representation, but not necessarily the simplest.

The classifications in Tables 3a and 3b nevertheless do provide some information
about the stages that pupils had reached on the two linear questions. Progression
through the three years is self-evident. The percentages for Stage 4c indicate that a
small but growing number of pupils are able to present an adequate algebraic
representation. And the percentages of pupils within Stage 4 reveal quite rapid and
continuous progress in the ability to describe verbally or algebraically or both in
Question [16], and significant progress between years 7 and 8 in Question [17]. The
evidence we have confirms that a verbal description is often available to pupils when
an algebraic statement is not.

Table 3a: Percentages of pupils reaching particular stages in Linear Question [16]

Stage 4c 4b 4a 4 3 2 1 0
Year 6 1.4 0.0 54.5 55.9 23.4 11.7 6.2 2.8
Year 7 8.5 1.9 57.0 67.4 16.1 8.7 5.9 1.9
Year 8 21.6 4.0 53.8 79.4 11.7 4.0 3.8 1.2

Table 3b: Percentages of pupils reaching particular stages in Linear Question [17]

Stage 4c 4b 4a 4 3 2 1 0
Year 6 0.7 0.0 23.0 23.7 23.7 14.4 21.6 16.5
Year 7 5.0 2.0 21.6 28.6 17.6 8.8 27.1 17.8
Year 8 14.4 4.8 26.3 45.5 21.0 7.8 17.4 8.3

The fact that responses were often difficult to classify in Stages, for such
reasons as an incorrect 100th term but a correct nth term, raises the question of
whether our procedure was legitimate. The Guttman (1941) coefficient of
reproducibility provides a measure-of whether such digressions from a strict hierarchy
are critical. Applying this analysis to our original data indicates that the responses can
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be classified in a true Guttman scale. (For [16] R=0.98 and for [17] R=0.96.)
However, there has been considerable discussion of the legitimacy of this procedure
(for example Moser and Ka lton, 1971). Chilton (1969) discusses different error
counting procedures and for the present study it was decided to use the method of
Loevinger which Chilton describes to give the maximum score for errors. Chi-square
procedures were also used to reject the possibility that the questions were
independent. Moser and Kalton (1971), however, have suggested that all facilities
should fall between' 20% and 80%, which suggests some uncertainty about our
conclusion.

Attempts to use a similar procedure with the Quadratic Questions were less
satisfactory, because so few pupils were able to progress beyond Stage 1 in questions
[10] and [11]. Thus a different procedure was adopted in which pupils' overall
responses were placed at one of five levels:

Level 0 No progress at all,
Level 1 Pupil notices some properties of the numbers, with

perhaps partial patterns described,
Level 2 Pupil notices a pattern but this is not described so

as to allow the next number(s) to be derived,
Level 3 Pupil knows how to derive the next number(s) using

patterns extrapolated from the differences,
Level 4 Pupil shows clear evidence of understanding the

relationship, though an algebraic formula may not be articulated.
Thus for Question [9], 'some numbers are odd' and '16 and 36 are in the four times
table' would be at Level 1; 'odd even odd even ...' and 'differences are odd' would be
at Level 2; 'add 3, 5, 7, 9, 11, 13 and so on' and 'keep adding the next odd number'
would be at Level 3; and 'times the row number by itself and 1 x 1, 2x2, 3x3,
would be at Level 4.

In the pilot test paper pupils had been asked, "What can you say about the
numbers that are inside the loop", and many had confined their response to one
observation. In order to obtain more information about what was actually noticed the
wording for the main study test was changed to, "Write down three things you notice
about the numbers in the loop". This produced a wider range of observations, but then
it was necessary for pupils to select which of their observations to use in the
calculation of further terms. Individual interviews revealed the dangers of us wrongly
assuming which method pupils were using to work out the next term. For example,
some pupils noticed that the differences increased by 2 but used a counting-on
procedure based on an extension of the triangle to work out the next term. Others
mentioned (in Question [9]), 'It goes up by 3, 5, 7, ...' but then focused on a different
pattern (16, 36, 56, ...) and gave 56 as the next term (in fact 8 per cent of all pupils
answered 56). Individual interviews confirmed that some pupils who mentioned, for
Question [9] or [II], that the differences go up by consecutive odd numbers were not
aware that this pattern would continue for further numbers in the loop. For this reason
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it was decided that Level 3 should not be awarded to pupils who had spotted the
difference pattern unless they were also either able to give correctly the next term in
the loop or had given sufficient evidence of the application of their difference method.
It was recognized that there was a risk of allocating only Level 2 to some pupils who
had applied the difference method but made numerical errors, and that there was also a
risk of allocating Level 3 to pupils who had observed the difference pattern, not
realizing that it could be extended, but had used some other method to achieve the
correct answer.

Some responses to the questions revealed improvement, that is a progression of
levels through the three questions, although this could have been because of better use
of language and not necessarily the development of understanding. There was also
some indication of other pupils becoming tired of writing down observations.
Certainly, for one reason or another, the number who left the observation section
blank increased from 10 per cent in Question [9] to 30 per cent in Question [II].
Using this classification system, the results in Tables 4a, 4b and 4c were obtained for
the Quadratic Questions. Many pupils achieved some success with Question [9],
though it is startling that the number of pupils who did not recognize the square
numbers was so high. Combining the facilities for Levels 3 and 4 gives a good
indication of how well pupils could cope with interpreting the number patterns, and
clear progression between Years 7 and 8 is evident.

Table 4a: Percentages of pupils classified at particular levels in Question 19

Level 4 and 3 4 3 2 1 0

Year 6 30.6 6.8 23.8. 25.9 31.3 12.2

Year 7 38.5 20.3 18.2 21.6 28.2 11.7

Year 8 53.7 29.1 24.6 24.8 13.9 7.6

Table 4b: Percentages of pupils classified at particular levels in Question 110

Level 4 and 3 4 3 2 1 0

Year 6 24.7 0.7 24.0 40.4 20.5 14.4

Year 7 37.6 5.4 32.2 35.8 14.9 11.7

Year 8 47.1 13.1 34.2 31.9 7.9 12.9

Table 4c: Percentages of pupils classified at particular levels in Quadratic 1l 1

Level 4 and 3 4 3 2 1 0

Year 6 25.5 0.0 25.5 24.1 18.6 31.7

Year 7 25.7 0.7 25.0 24.5 20.0 29.8

Year 8 35.0 2.7 32.3 22.3 11.6 31.1

It is not appropriate to attempt to use the Gunman coefficient of reproducibility
here because decisions about levels are not made on the basis of dichotomy.
Responses are not simply right or wrong, but have to be judged in terms of quality.
Instead, it is possible to relate our procedure to the SOLO model for the development
of intellectual functioning. Working within the concrete operational stage, the match
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is good but not exact. There is clear justification for regarding Level 4 as the
`relational' level of the SOLO taxonomy, Level 3 as `multistructural', Level 1 as
`unistructural' and Level 0 as 'pre-structural'. Level 2, however, appears to fall
between multistructural and unistructural, and therefore appears to suggest the need
for an intermediate 'partial-' or `semi- multistructural' level in order to cater for
considerable numbers of responses.

There will always be difficulties in attempting to classify children's levels of
thinking. Written responses can be illuminated by oral explanation but there is the
possibility of misinterpretation of any answer, oral or written, and some pupils seem
uncertain of what is required and may fail to respond at all. Nevertheless some form
of classification helps to clarify the overall picture and it is hoped that our attempts
will enlighten the development of better research instruments.
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CHILDREN'S INTUITIVE UNDERSTANDING OF AREA MEASUREMENT

Lynne Outhred and Michael Mitchelmore

School of Education, Macquarie University

This paper describes the strategies that young children used to solve rectangular area
measurement tasks before being formally taught about area. These strategies are classified
into five levels which appear to be developmental. Three crucial principles which children
seemed to learn are that the rectangle must be covered without gaps or overlap; that it may
be covered by a tessellation of squares; and that the number of units along each side can be
found by measuring the linear dimensions. The implications for teaching length and area
measurement are then addressed

Despite being one of the most widely taught measurement concepts in the primary school,
the concept of area is misunderstood by many children in the age range of seven to eleven
years (Bell, Hughes, & Rogers, 1975). There is also a considerable body of evidence that
suggests area is not well understood at secondary school (Clements & Ellerton, 1995; Bell,
Costello & Kuchemann, 1983). For example, Foxman, Ruddock, Joffe, Mason, Mitchell, &
Sexton (1983) found that only 55% of eleven-year-olds in the UK could find the number of
unit squares that would cover a T shape, given the lengths of its sides. When the term "area"
was used the percentage of students who were successful dropped to 25%. Students were
more successful when a square grid was shown superimposed on the shape than when they
were given side lengths, presumably because the grid emphasised the covering aspect of
area and because they could simply count the squares.

Prospective elementary teachers' knowledge of area has also been reported as inadequate.
Simon and Blume (1994) indicated that although the student teachers in their study
responded to area problems by multiplying, their choice of operation was often the result of
having learned a procedure or formula for the area of a rectangle rather than the result of a
solid conceptual link between their understandings of the relationship between side length
and area. In a study by Tierney, Boyd and Davis (1990) many student teachers were
observed to: confuse area and perimeter; apply the formula for finding the area of a
rectangle to plane figures other than rectangles; consider area as "length x width"; use linear
rather than square units; and equate changes in linear dimensions to changes in area (for
example, many students believed that if the lengths of the sides of a square were doubled so
would be its area).

There is general agreement that children's difficulties with rectangular area concepts are
due, in part, to an emphasis on the formula and that if children do not understand the
significance of partitioning regions into unit squares, any attempt to teach procedures to
calculate areas will at best be learned by rote (Carpenter, Coburn, Reys & Wilson, 1975).
To overcome the problem of rote application of formulae, concrete materials have been
widely recommended as the basis on which to build abstract concepts. However, a number
of research studies have indicated that children do not grasp the relationship between
different forms of representation of mathematical ideas, in particular, between concrete
activities involving covering rectangular figures and the formula for rectangular area
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(Dickson, 1989; Hart, 1987, 1993). Moreover, the materials used to measure areas may
affect children's thinking. Doig, Cheeseman & Lindsey (1995) in a study of eight-year-old
children found that children who used wooden tiles to cover a surface were twice as
successful as children who used paper tiles, because using wooden tiles avoided many
potential problems such as overlap and gaps. Moreover, children may be able to find the
number of unit squares that cover a shape but not realise that they are calculating the area
(Bell, Costello, & Klichemann, 1983).

Children's drawings give further insights into their understanding of basic area concepts. In
a small study of Year 6 and 7 children in Jamaica, Mitchelmore (1983) found that while
most students gave the correct values for the areas of different shapes, none could draw unit
squares in a given size rectangle and the children still had difficulties after practising
covering and tiling activities. The conceptual problem would not be apparent using concrete
materials, for the materials may so structure the array that children do not relate its
construction to the dimensions of the rectangle. However, drawing tessellations of squares
in a rectangle may focus children's attention on the relationship between the number of area
units that cover a rectangle and the lengths of its sides, because the children have to
determine how many units will fit along the adjacent sides.

Linking linear dimensions to rectangular area was identified by Simon and Blume (1994) as
being difficult for student teachers. These authors suggested that learners need to
understand the area of a rectangle as a quantification of surface and to visualise it as
measurable by a rectangular array of units. The student teachers had a sense of the structure
of a rectangular array, and seemed able to think about the target quantity as a combination
of rows of area units. What was needed, Simon and Blume inferred, was the opportunity to
develop a sense of how the linear measures and the area unit determined the shape and size
of the array.

The current paper describes an investigation of how young children intuitively relate the
area of a rectangle to its linear dimensions, part of a larger study (Outhred, 1993). The
research questions were:

What strategies do young children use to find rectangular areas before being taught
the area formula?

Can children's strategies be reliably classified into a sequence of developmental
levels?

To provide answers to these questions, a large sample of children were observed as they
solved a number of area measurement tasks.

METHOD

The sample consisted of 115 children, with approximately equal numbers of boys and girls
from a range of cultural groups, randomly selected from Years 1 to 4 in four schools in a
medium socioeconomic area of Sydney. Children were presented with twelve array tasks,
involving drawing, counting, and measurement skills; tasks were presented in a fixed order.
The interviewer inferred children's strategies from a combination of observation and careful
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questioning as the children worked through the tasks. In this paper, only the measurement
tasks will be discussed. Two measurement tasks (MTI and MT2 below) were given to
investigate children's understandings of the relation between side length and area. An
additional measurement task (MT3) was given to 43 children as an extension activity.

The first task (MTI) was designed to tap basic concepts of covering using an informal unit.
The unit (a 2 cm cardboard square) was provided and the children were asked to work out
how many such squares would be needed to cover an 8 x 8 cm square shown on a sheet of
paper. As the children were only given one unit they had to mark the rectangle in some way
to work out how many congruent units would be needed to cover the figure. In this task the
array could be constructed without "formal" measurement, for example, by repeatedly
tracing the square.

MT1

0

MT2

The purpose of the second task (MT2) was to identify the strategies children used to find
the number of standard units that would cover a rectangle using a ruler. The children were
asked to work out how many 1 cm squares would be needed to cover a 6 x 5 cm rectangle.
A square was shown to indicate the size of the units. Before they began this task the
children were asked to measure the length of a 10 cm line to check their linear measurement
skills. Success on task MT2 depended both on children's linear measurement skills and on
their knowledge of the relation between linear measures and the structure of an array of
squares.

A third task (MT3) was presented to children who measured at least one dimension on task
MT2. This task was included to assess whether children who were able to determine the
number of squares that would cover a rectangle could extend this concept to a task that
involved the construction of more complex units. The task also served as a challenge for the
children who could answer the core interview questions easily. The children were asked to
work out how many 2 cm squares would be needed to cover an 8 x 10 cm rectangle when
neither rectangle nor unit was shown.

RESULTS

In this section the strategies that children to solve each task are briefly described and then
categorised into five developmental levels.

Classification of strategies for task MTI

1.1 Unsystematic estimation. In these strategies, children had no way of ensuring that they
covered the region without gaps or overlapping. Thirty percent of children used such a
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strategy and none of them correctly found the number of units that would cover the square.
For example, some children did not refer at all, or only made a visual reference, to the
cardboard unit.

1.2 Moving and marking. The most common strategies seemed to be analogous to the
physical action of covering the rectangle and involved systematically moving the square
over the figure and marking its position in some way each time it was moved.

In some strategies, children marked either a side or a corner to keep the size of the unit
constant. Twenty four percent of the sample used such strategies, of whom 62% correctly
found the number of units. For the children who marked the endpoint of each unit move,
this strategy was reasonably precise; errors usually resulted from adding extra rows or
counting inaccurately.

The most common and accurate form of marking, however, was to trace the cardboard
square repeatedly. Thirty four percent of the sample used this strategy, of whom 76%
correctly found the number of units. This strategy was usually successfully executed,
perhaps because (as when constructing the entire tessellation using cardboard squares) the
material structured the array.

1.3 Informal measurement of side length. Twenty two percent of the sample used the given
square to find how many units fitted along each side of the rectangle. Of these, 86% were
successful in finding the number of units which covered the rectangle.

Classification of strategies for task MT2

In the second task the unit was shown pictorially but not supplied as a concrete unit.
Therefore, the most commonly used strategies for MT1, moving and marking, could not be
used. Thus, this task should be more effective in showing understandings of area than the
more concrete task. About a fifth of the sample did not know how to measure the length of
the line andl were not asked to complete the second part of the task.

2.1 Array not completed. In addition to the 21% of children who could not measure length,
a further 16% of the sample could not use a ruler to work out how many squares would
cover the shape. Although these children had measured the line they usually drew individual
squares with little regard to the size of the unit shown and to covering the region.

2.2 Array estimation. The main characteristic of this category is that, while children
constructed an array, they used no reliable method of determining unit size. Twenty three
per cent of the sample used such strategies, but they were rarely accurate, only two children
obtaining the correct answer. If children estimated units along adjacent sides, then drew the
array, they would essentially relate area to side length in the same way as children who
measured the sides. However, only one child appeared to do this.

2.3 Measurement of one dimension. In these strategies, children measured one side of the
rectangle and estimated the other. Fourteen percent of the sample used such strategies but
only one child was successful. The technique used by nearly all of the children who used
these strategies was to place the ruler along the top of the rectangle, mark or count units
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along the ruler, then slide the ruler down (estimating the vertical distance) and repeat the
procedure.

2.4 Measurement of both dimensions. These strategies were used by 26% of the sample and
85% of these children obtained the correct solution. They involved the measurement of
adjacent sides of the rectangle by marking each unit and either drawing the array; drawing
squares along the two sides; or working out the number of units from side marks. A few
children measured each side and multiplied the lengths.

Classification of strategies for task MT3

The strategies used to solve task MT3 provided additional information about the factors that
make area a difficult concept for children. This measurement task was the most difficult
because neither rectangle nor unit was shown. Moreover, the unit was a two centimetre
square so measurements had to be coordinated in each dimension. The most common
strategies were to draw an array; to mark off length units along the sides; and to calculate
the number of squares from the length units without drawing. For example, Kelly (Year 4)
without drawing explained that "You could halve each length so it's 4x5", while Tarun
(Year 4) said "Every 2 cm is 1 so 10 is 5 and 8 is 4, so it's 5x4."

Classification of strategies into levels

Consideration of the strategies that were observed for the three tasks suggest that there are
five levels in children's responses to rectangular area measurement tasks.

Level I: Inadequate covering. Children do not realise that the whole surface must be
covered with equal units; so they leave gaps, overlap units, or do not keep unit size
constant.

Level 2: Enactive covering. Children realise that the whole surface of the rectangle must be
covered. However, they may have difficulty ensuring that the covering is systematic and
that the units are congruent.

Level 3: Array constructed, units estimated. Children realise that a tessellation of units gives
a systematic covering of the surface. However, they do not see the relation between the size
of the array and the lengths of the sides of the rectangle.

Level 4: Array constructed, one length measured. Children see the relation between the size
of the array and the length of one side of the rectangle, but because they focus on one
dimension, either rows or columns, they have difficulty constructing an accurate array.

Level 5: Array constructed, both lengths measured. Children measure or mark off units on
both sides of the rectangle. This step seems to be essential for children to generalise from a
tessellation of standard units (e.g., square centimetres) to a complex unit tessellation (e.g.,
two centimetre squares).

This sequence is developmental in the sense that each level would appear to be a
prerequisite for the next level. However, each child did not solve all the tasks at the same
level. For example, some children who used an estimation or tracing strategy (level 3) for
MT1 used a level 4 or 5 strategy for MT2 and MT3. We may surmise that, at any given



point in time, a child can operate up to a certain level but that the actual level employed to
solve a particular task will depend on the specific demands of that task.

The empirical data tend to support the developmental nature of the above sequence. For
example, most Year 1 students could not attempt MT2 although many traced the number of
units that would cover MT1. Year 2 children predominantly used an estimation strategy for
MT1 but a number had progressed to measuring one side length in solving MT2. By Year 3
and 4, a considerable proportion of the sample (about a third of Year 3 and three quarters of
Year 4) measured the lengths of adjacent sides of the rectangle in some way in order to find
its area.

DISCUSSION

The above five-level classification of children's strategies incorporates three key principles
of rectangular area measurement:

Principle 1: The rectangle must be covered by unit squares without overlaps or gaps.

Principle 2: The unit squares must be congruent and aligned in an array with the same
number of units in each row (and column).

Principle 3: The number of units in each row and in each column can be determined from
the lengths of the sides of the rectangle.

The role of multiplication appears not to be crucial to an informal understanding of
rectangular area measurement, although it would of course be essential to an understanding
of the area formula. We therefore list it here for completeness:

Principle 4: The number of units in a rectangular array is the product of the number of units
in each row and in each column.

Previous research on rectangular area measurement has tended to concentrate on Principles
1 and 4. The other tasks included in the present study but not reported here have already
thrown light on how children learn to construct the rectangular array structure in Principle 2
(Outhred & Mitchelmore, 1992). The contribution of the present paper is to emphasise the
significance of Principle 3, which appears to have been completely neglected in the
literature. It may seem self-evident to adults that the numbers in the array must depend on
the measurements of the sides, but it is clearly not self-evident to children. Let us consider
why this is the case, and how children might be helped to learn Principle 3.

The basic problem that children who have learned Principles 1 and 2 have to solve is, How
many unit squares fit along each side of the rectangle? Only if the unit square is physically
available can this question be answered directly (as in Strategy 1.3 above). Otherwise,
children must first realise that the length of a side (in centimetres) specifies the number of 1
cm unit lengths that will fit along that side; and then, that this number determines the
number of unit squares that will fit along the side. Children's errors in measuring both the
single line and the sides of the rectangle in MT2 suggest that many children had a purely
instrumental understanding of linear measurement. Common errors included measuring
from one end of the ruler (instead of the zero mark); measuring from the 1 mark; and
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counting marks instead of spaces. Other children repeatedly shifted their ruler 1 cm at a
time, reminiscent of Strategy 1.3. Clearly the principle of ruler use (if you put the zero mark
against one end of the line, the number against the other end of the line gives the number of
1 cm spaces) demands quite a degree of relational understanding. But this level of
understanding would seem to be essential if the length of a side is to be related to the
number of unit squares which will fit along it, especially if the side of the unit square is not
1 cm.

The learning of Principle 3 of rectangular area measurement would therefore seem to be
dependent on a relational understanding of linear measurement, and in particular the use of
a standard ruler. The teaching implication is that measurement with a ruler should not be
taught simply as a mechanical skill. The ruler could instead be seen as only one of a number
of ways of solving the general problem, How can you find how many of some unit length fit
along a given length? For example, children might construct and label their own, non-
standard "rulers" (such as 1 m strings marked every 10 cm). It would also be valuable for
children to draw accurately the tessellations they make with concrete materials. Such
experiences would help children understand area measurement by providing a closer link to
length measurement.
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RESPONSIVENESS: A KEY ASPECT OF SPATIAL PROBLEM SOLVING

Kay Owens

University of Western Sydney, Macarthur

Responsiveness _emerged as a key aspect of spatial problem solving during an
analysis of qualitative data gathered on primary school students engaged in spatial
problem solving. Responsiveness may be regarded as a composite result of various
cognitive processes including selective attention and affective processing as
illustrated by an example. Theoretical and methodological issues are also discussed.

Background

The study described in this paper is essentially an investigation into the effects on
primary school children of a program of spatial learning experiences. Typically spatial

training studies have involved secondary or tertiary students in programs based on
difficult two-dimensional and three-dimensional tasks (summaries in Eliot, 1987; Lean,
1984; Owens, 1990 & 1993). The studies by Del Grande (1987), Flores (1995), Lewis
(1995), and Smith and Schroeder (1979) are exceptions but used mainly quantitative
analyses. The qualitative study now reported explored how young children learned
through spatial problem-solving experiences. The study involved the same learning
experiences that had been shown to improve spatial thinking processes of primary
school students (Owens, 1992b, 1993a & 1993b). The series of ten sessionsbased on
activities with pentominoes, tangrams, pattern blocks, and matchstick designswere
suitable for Year 2 and 4 students and encouraged some analysis and imagery.

Some studies into the thought processes of primary school children have used
interviews but only a small number of students, concepts, or contexts have been
involved (Mansfield & Scott, 1990; Wheatley & Cobb, 1990). The present study
involved a large number of students, many concepts (ranging from shape concepts to
angles and symmetry and other shape attributes) and 12 different classrooms.

Methodology

Spatial thinking is a mental activity and, as such, is not easily studied. The review of
the literature indicated that retrospective comment was a reasonable approacli for
studying cognitive processing (Owens, 1990) by adults. This kind of data, however,
needed to be supplemented with observational records when young students were
involved. Further, the students participated in the activities in classrooms and so
special procedures were needed to carry out a qualitative study. Several concerns were
specifically met:

1. Controls for achieving reliability and validity with data were assisted by (a)
purposefully selecting experiences, groups, and samples and (b) carefully recording,
categorising, and making counts of described variables.

2. Observations were interpreted in terms of the theoretical position of the
researcher and research literature (particularly on visual imagery, Goldin, 1987,
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Osborne & Wittrock, 1983) but this did not limit the importance of' unexpected results.
Categories and relationships which were conjectured were further tested and modified
in new situations.

3. The use of novel problems with concrete materials generated better quality
retrospection data. The use of small groups encouraged children to talk freely and
comment during the activities and during video-replay.

4. To some extent observation supported and was supported by verbal reports, but
both methods of data collection provided their own forms of data.

5. Counts of examples of categories and connections between categories formed the
basis of conjectures arising from patterns of behaviour or cognitive processes.

The use of observational and interview techniques for assessing thinking seems to
be important and pertinent considering the recent emphasis on alternative assessment
procedures in Mathematics education and on drawing inferences from classroom
discourse (Clarke, 1989; Stenmark, 1989).

ProcedureJar the Qualitative Study
The procedure involved selecting students in different samples, video-recording

these students as they attempted to solve the spatial mathematics problem, describing
incidents in the students' process of solving the problems, aligning these incidents with
specified categories and subcategories, and following a grounded-theory approach to
developing a "story-line" (Strauss & Corbin, 1990). A computer spreadsheet was used
to record the descriptions of each incident and to record categories. These could be
used for searching for patterns and for crosstabulations. The computer techniques were
valuable in assisting the research process.

Several samples of students were selected from different situations (as
recommended by Strauss & Corbin, 1990).

Stage I. Data were obtained from two groups: (a) 52 adults (teacher-education
students for whom the problems were novel) who commented on their thinking both as
they worked through the problems and immediately afterwards; and (b) 13 children
who worked alone on the spatial problems with minimal intervention from any other
person and who commented on their thinking spontaneously or immediately
afterwards. From this data, categories and subcategories were developed to form the
basis for analysing the data obtained in the next stage (1994b).

Stage 2. There were two samples: (a) 12 students who worked in groups of three
(two groups from Year 2 and two from Year 4), and who were asked how they were
thinking immediately alter working on each spatial problem (video-playback and oral
reference to incidents were used to stimulate recall); and (b) 167 children (77 in Year
2 and 90 in Year 4) in six primary classrooms in Australia. The children were matched
by school, year, class, and pretest score and randomly allocated to either a group in
which students worked individually near others or a group in which students worked in
small cooperative groups. Analysis of data led to the development of a model and
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descriptions of aspects of learning through problem solving. These descriptions

suggested relationships between the categories of thinking processes which had been

identified.
Stage 3. The "story-line" which was developed was checked by using two further

samples: (a) 180 students in Grades 2 and 4 in Papua New Guinea who were placed

into either the individual or group learning situation, and (b) 54 students (Years 2 and

4) from another Sydney region who were matched by Year and pre-test schore and

randomly allocated to the different groups.

In stage 2 over 120 video-taped sessions were analysed. Each problem-solving

session was considered as a series of incidents. An incident was defined as a relatively

short period of time during which actions, expressions, or discourse changed as a

result, it seemed, of changes in cognitive processing and interactions with people or

materials. For each incident, students' spoken comments and observations of their

actions and expressions were recorded and coded in terms of the defined categories

and subcategories. The categories covered interactions between the students and the

teacher, the use of concrete materials, and the cognitive processes suggested by the

actions, words, and expressions of the students. These processes included affective

processes (such as feelings), heuristics (such as tactics and decisions about progress in

solving the problem), the use of concepts (such as what parts distinguish a particular

shape), and the use of visual imagery (Owens, 1993, I 994a; Owens & Clements, in

press).

Conjectures were made about how the various categories related to each other.

From crosstabulations of subcategories, from "immersion" in the data, and from
deliberate attempts to look for links and to check these links (Strauss & Corbin, 1990),

patterns of relationships between subcategories were developed. These were illustrated

extensively by examples (Owens, 1993). Four other researchers watched video-tapes

and classified incidents in order to check and improve the classification process. The

investigation generated a model which encapsulated students thinking processes and

their responsiveness during spatial tasks. The emphasis in this paper is on

responsiveness -- a key composite variable which emerged from the data during the

study.

Responsiveness

Students' responsiveness during active engagement in problem-solving activities is
precipitated by their own thinking and feelings. Their responsiveness affects the
immediate social and physical environment which, in turn, influences the person's
thinking. It may, for example, be a change in position of concrete materials or a verbal
reply by another student. This is illustrated in Figure 1.

Responsiveness implies a degree of understanding as well as involvement and
interest in the activity. There is an ongoing dynamic relationship between students and
their environment (that is to say, other students, the teacher, the classroom, and the



task). Responsiveness embraces the kind of personal involvement and empathy which
Fischbein (1987) associated with intuition, and Mason (1994) with "1-You" awareness
in constructing concepts from "I -It" experiences.

Context
Teacher
Materials
set problem
availability
placement

Other Students
comments
cooperation

Classroom
groupings
seating
expectations
time constraints

Responsiveness
Person . .

Links concepts and imagery to
materials
Manipulates materials
Applies heuristics
Records, displays, describes
Notices aspects of materials / people
Expresses feelings
Communicates with teacher / students

Influence
Context . . .

influences perceptions especially
seeing and hearing

Affects feelings
Affects the opportunity to manipulate
Disrupts thinking
Encourages certain thinking patterns
Encourages / discourages communication

Figure I. Aspects of problem solving.

Changes in cognitive processing and in the learning environment occur throughout
the period of a student's engagement in a learning experience. The student is
continually perceiving, thinking and feeling, and then responding, and this dynamically
affects the learning context. There is often a "snowballing" effect, not only on
participation, but also on the extent and (walk), of imagery, concepts, understandings,
al id problem solving tactics. The cyclical interaction pattern represented in Figure

1

Cognitive Processing
Selectively attending
Perceiving, listening, looking
Intuitive thinking
Heuristics
establishing meaning of problem
developing tactics
self-monitoring
checking

Imagining
Conceptualising
Affective processes
response to organisation, success
confidence, interest
tolerance of open-ended situation
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provides for growth and continuity like a spiral, and for overlap of cycles like a double

helix.

Cognitive processing embraces attending, perceiving, listening, looking, visual

imagining, conceptualising, intuitive thinking and heuristic processing. Cognitive
processing also incorporates affective processes such as reactions to the organisation

of the classroom and to success, confidence, interest, and tolerance of open-ended

problems. Points involving critical change in thinking are likely to involve both
changes in affect and changes in understanding.

There is no hierarchy of cognitive processes suggested by the present model, and

this is the case also in Goldin's (1987) model. Both models suggest that mental

representations during problem solving arise front interactions between different non-

hierarchical "languages" (Goldin, 1987). By contrast, Pirie and Kieren's (1991) model

assumes there is a hierarchy in the development of students' understanding (from rich

imagery to conceptualising, structuring and inventising) although their notion of
"folding back" recognises the need to return from levels such as "formalised

conceptualising" to earlier levels of thinking such as "image making." The four models

(developed by Goldin, Owens, Osborne & Wittrock, and Pirie & Kieren) refer
specifically to visual imagery. The roles of imagery and selective attention have been

discussed elsewhere (Owens, I994a, 1995; Owens & Clements, in press).

Cognitive Processing Influencing Responsiveness
An example. will illustrate how responsiveness is often influenced by affect. In the

second spatial activity James, a Year 2 student, was thoroughly involved in making

new tetromino and then pentomino shapes from square breadclips. He also enjoyed
commenting and in other ways expressing his achievements and feelings of pleasure.

"Names" are used for different designs as illustrated and each paragraph (para.) is

numbeted for referencing in comments below.

I James continues to count how many he has made, comparing his number with his 920
friend's number.

2 Using four squares, he makes a "Z;" checks that it is all right and then makes a "cross" C)
avoiding repeating the Z.

3 His friend points out "it is half here," so he changes it to a "T". EEP

4 He begins with five squares, deliberately positioning the pieces to make a Z. Then he

makes a "lineZ".
5 He notes his friend's shape saying "Yours has three columns, mine has two; she copied TED

me." (Each made the lineZ in different orientations.)
6 The teacher suggests that they work together but he keeps making shapes quickly and

happily, commenting on how well he is going. He uses a tactic of beginning a new
shape with "three-in-a-row." He counts his shapes and says "I'm beating her." He lop
knows what he is making before he completes the shape, showing joy before he finishes icio
making the shape. He places three-in-a-row, and claps as he makes a "C."

7 He cannot recognise the "odd" shape in different orientations despite moving his body
to assist orientation. He changes the shapes to' make the easily-recognised shapes "L3"
and the "square -like shape," comparing the incomplete shapes with his short-term

1111
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memory images of those he has made (that is, he is not physically glancing at his
shapes).

8 He changes his tactic from starting with three-in-a-row to beginning with four-in-a-
row. He makes the "L4."

9 He quickly grabs the last live breadclips so that he can make another shape.
10 He wants to make a car but ends up with lineZ, globally deciding it is different and says

"Oh, 1 can't make any more." His activity wanes when the teacher asks if they can find
any shapes that are repeated in the group's work.
He recognises the repeated lineZ and L4.

There are several points to note about James' responsiveness. First, a friendly
competition existed between the students and this motivated them to participate and
achieve (paras I and 6). Certain affective characteristics are evident in his behaviour- -
his responses to his successes (paras I and 6), his competitiveness (paras I, 6, and 9),
his desire to make shapes (para. 9), and his loss of interest at the end (para. 10).
Second, James' use of imagery influenced his responsiveness- -not only his
manipulation of materials (paras 3, 4, 7 and 10), but also his comment to his friend
(para. 5) and his self-assessments (paras 6, 10, and I I) which tend to keep him on
task. His imagery helps him to stay on task (paras 6 and 10). Third, he assessed or
monitored his own progress on the task and this, too, influenced his responsiveness.
He showed his monitoring by expressing how he was progressing (para. I and 6) and
by changing his tactic in an appropriate way (paras 8 and 10). Finally, he expressed his
understanding and knowledge (paras 3, 4, 5, and I I). The changes in his responses
(paras 3 and 10/11) were precipitated by comments to him by his friend and by the
teacher. Thus we see how his responsiveness was affected by (a) his understanding of
the problem, (b) his use of visual imagery associated with comments by other students
and the teacher, (c) his sell-monnoring, and (d) his attitudes. At the same time, we can
see how his visual imagery and tactics improved.

Mand ler (1987) and McLeod (1993) have analysed the role of affect in learning
and there can be no doubt that affect is an integral part of thinking influencing
responsiveness. Positive feelings were strongly associated with deliberate
manipulations (based on crosstabulations of categories), possibly because deliberate
manipulations were likely to be associated with achieving results for the problem.
Feelings were frequently associated with student self-monitoring. Much of this
checking was achieved by placing pieces together or by looking and comparing pieces
or configurations. The children expressed their feelings verbally on many occasions,
and by attracting the teacher's attention, by clapping, and by smiling. Students working
by themselves were generally positive about themselves working on the tasks, and in
these cases interactions assisted the individual learners whereas. the students working
in groups were more inclined to show positive feelings about the task.

Students who experienced positive feelings about a task and themselves were
motivated to continue to explore aspects of the task (cf. Goldin, 1988). These feelings
were commonly associated with success as a result of deliberate manipulations,
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analytic conceptualising, and pattern and procedural imagery (Owens, 1995). Once
students had developed a tactic, they usually worked well on a pioblem, and if they
succeeded, they were then motivated to continue to try ideas and to keep on-task even
if more advanced concepts and visualisations were needed.

In the orientation phase of problem solving a degree of uncertainty was tolerated,
and negative feelings were usually mellowed by students making a start based on
visual intuitive approaches, play, or interactions with others. A student occasionally
might express negative feelings towards another student by making the task
competitive or by disrupting productive work. Both positive and negative feelings were
frequently manifested through interactions with others.

The teacher interacted in response to students' facial expressions, successes,
uncertainty, and loss of interest. Students felt uneasy when the teacher questioned
them. This may have been because the teacher was trying to help students with a
difficult task such as generalising or disembedding parts of a shape. Alternatively,
beliefs and established routines about mathematics classrooms (e.g., in some
classrooms, no talking, no looking around, giving the answer that the teacher wants),
seemed to influence interactions and to impact on the behaviour of students and the
extent to which they were prepared to talk and share ideas with others.

In Summary

This paper has noted the way in which cognitive processing influences students'
responsiveness which in turn influences the problem-solving environment and further
learning. Responsiveness, although previously not recognised by mathematics
education research, would appear to be an important variable influencing participation
and performance in mathematics.
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THE FIRST ALGEBRAIC LEARNING
THE FAILURE OF SUCCESS
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The objective of this research is to clarify the relationship between a teaching proposal - usual
in our country - concerning the first algebra learning, and the meanings built by the students. The
study is based on class observations made in a first year course of secondary school, which introduces
the algebra by means of first degree equations with an unknown. Our analysis shows that the didactical
proposal, on the one hand, emphasizes the continuity with arithmetics and, on the other hand causes a
fracture with the students' previous knowledge. Hypotheses about the meanings built by the students by
means of this approach are posed Some significant meanings are identified which would be out or
would be restrained by such ideas, in spite of the proposal success in relation to the teacher's goals.
Moreover, it is pointed out that the observed system does not recognize as an objective to introduce the
algebra through problems for which it is necessary.

1. Introduction

The purpose of our research is to identify the appropriation conditions of
elementary algebra in secondary school students. Having set our interest in the first
learning, we are essentially thinking about the use of letters as variables and unknowns.

Considering the theoretical and methodological frame of the Theory of Situations
(Brousseau, G.; 1987) of Didactics Engineering .(Artigue, M.; 1988) and of the
instrument-object Dialectics (Douady, R.; 1986), in order to move forward in our
research it is a priority. to know better the relationships between the existing teaching
proposals and the meanings the students get about the algebraic objects. Only by taking a
certain distance, and defining the algebra teaching in our school today, as an object to be
known, could we go beyond the position of extreme criticism that only shows the poor
achievements of the students.

As many researchers have pointed it out (Cortes,A.-Vergeaud,G.-Kavafian,N.
1990; Chevallard,Y.;1984), the algebra learning implies a significant epistemological
break. From this perspective, we therefore planned to make a set of observations of
introductory algebra lessons and to analyze the proposals of the text books that are
important references for teachers.

The objective of this report is to clarify partly the system supplies and demands in
the first learning of algebraic tools, the proposed object approaches and the assignments
to be learnt in. order to be successful m this matter. We basically intend to identify the
meanings that are left out, even by learning well everything required by the system.

The work is based on observations made in a first yPar course of secondary school
(12-13-year-old students). The selected school was a public one in the suburbs of-the city.
A school with a good reputation, where a work environment in the classrooms and among
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the teachers was better than the usual. The observed teacher - who offered to help with
our research - has a good reputation, was able to keep the attention of the students,
showed a good work with their mistakes, and considering the results of a final evaluation,
to. a great extent achieved the goals that she had set to herself. Whenever necessary, we
will add the following to these observations: mentions to the used text book; data taken
from a exploratory questionnaire made to a group of over one hundred 12 to 17-year-old
children of another school., an interview made several months later to the class teacher
and a clinical interview made to two girl students considered by the teacher to be among
the best of the class.

2. Purposes of the System

The observed system teaches the beginning of the algebraic through the study of
first degree equations with an unknown in seven lessons. All the assignments done by the
students not only during the lessons, but also in a subsequent evaluation, were related to
the achievement of these two purposes:

-To translate from the colloquial language into the symbolic one (that is to say, to
put a problem or a word relation into equation).

-To solve equations.

The purpose of this paper is to show some matters that remain dark in spite of
the achievements of these objectives and that could hinder the understanding of the
different algebraic objects in the future.

3. The equation object at school

Equation is a definable notion in the field of the Mathematics Logic. Its precise
definition, as a propositional function, does not seem to be within the 12-13-year-old
students' possibilities that make their first approach to the use of letters as variables and
unknowns. Y.Chevallard (1985) states that it is about a paramathematical notion, that is

ito say, a tool notion of the mathematical activity that is not normally object of school
teaching. Although the system is not intended for students to learn "what is an
equation?", in order for the students to acquire with meaning the different algebraic
objects that the system does state as teaching objects (quadratic equations, linear
equations with more than one variable, inequalities, functions), it will be necessary for the
students to start building different approaches to the equation concept. This involves the
elaboration of the root concepts, truth set, variable, equivalent equations, and so on.

In spite of the complex nature and of the difficult definition of the "equation"
object, the subject of the first degree equations with an unknown is started with a general
definition of equation. As a consequence of this, they appear overlapped - and at first
without possibilities of differentiation for the 12-13-year-old student - two concepts of
different nature: the equation' concept and the first degree equation with a variable
concept. The definition given to both concepts is that of"equality with unknown".

We will not pause to .analyze this identification between the equation notion and
the first degree equation notion. We will try instead to describe in detail some problems
that arise from the definition of equation as 'equality with unknown".

What concepts do the students acquire from this presentation? It seems that the
students deal simultaneously with two ideas of "equality with unknown". The first one is
connected with the form of the expression and would be related to the presence of a sign

16 4 - 108



or symbol that is not a numeral. According to the second idea, the students identify
equality with numerical equality and unknown with "number to be revealed". They seem
to believe that an equation is an equality among numbers where the x is "concealing" one
number that takes part in the expression. The equation would therefore be a proposition -
the statement of an equality - and not a propositional function. We believe that this idea is
opposed to the equation idea as a restriction over a domain.

We have seen that when students are confronted to identifying equations from a list
of expressions, they take the first of these ideas, acknowledging the difference between
the "type" munber and the "type" wiknown. However, when trying to solve an equation
without solution they end up.rejecting it as such, which leads us to think that they bring
up to date the idea of numencal equality. The following part of the interview held with
two students can be interpreted from this characterization: (The students had been
sub ested to solve the equation 3 x I- 2 = 3 x + 8. The students work correctly and arrive
at the following expression: 3 x - 3 x = 8 2) ()

S 1 I: Oh, oh, oh...
12 What's the matter? .

S I : If we put the unknowns of a member together... it would be 3 x minus 3 x, we're out of x.
So?

S23: Zero x.
Mm, and so?

S I : We can't solve it, we're out of x, unknown.
And so?

S2: It's hardly an equation. Sure, it would be an equation...it is an equation because it has
unknown, but if you start solving it, it's not an equation because...

S I: (interrupting S2) It doesn't have equality.
Does it mean it may seem to me that something is an equation but later I may realize it is
not? Can this be possible?

S2: Of course.
SI: (first hesitates) Yes, because when you see something with unknown you say: "oh! An

equation! ", but perhaps later when you solve it, it's not an equation because it doesn't
have an equality, it doesn't reach a final result.

SI: In my opinion, it is an equation, but you can't reach a final result, it doesn't have a
solution.

S2: It is an equation because it has unknown, but it doesn't have equality. In my opinion, it
doesn't have equality.

S I: No, it doesn't have equality.
I: So, if the equation is an equality with unknown, what happens with it?
(SI and S2 remain silent for a while)
I: It is doubtful, isn't it?
S2: In my opinion, it is an equation because it has unknown, but it doesn't have equality.
I: But you told me that an equation is an equality with unknown. So?
S2: (laughs) I mean, I don't know. At first sight it looks like an equation, but when you look

at it carefully, it doesn't have equality.
S I: No, when you start solving it, you can't reach a final result.
I: And so?
S I: It's no longer an equation.

1 SI stands for student I.
2 I stands for intervimer.
3 S2 stands for student 2.
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That is to say, we said that all these are (a list of expressions that had been given to.them
to choose which ones were equations). Could it be possible for us to change our minds
later?

SI: While you are solving it? Yes.
In which case would you change your mind?

SI: In the case of an equation?
Yes.

SI: If I reach a final result and it is an equality, it is an equation. But if I can't reach a final
result as in this case, in my opinion it's no longer an equation.

In different moments of the interview, these two students seem to use the
two ideas above mentioned. Let us analyze, for example, S2's phrase: "at first sight it
looks like an equation, but when you look at it carefully, it doesn't have equality". Fn the
first part of the sentence, the emphasis seems to be placed in the form of the expression,
while at the end she gives priority to the idea of numerical equality. The same applies to
the following sentence: "if I reach a final result and it is an equality, then it is an equation.
But if I can't reach a final result as in this case, in my opinion it's no longer an equation",
stated by SI. Summing up, the change of the expression status (the equation is no longer
an equation) seems monitored by a change in the idea that is used and this one at the same
time depends upon the type of assignment faced (to classify or solve). As far as the
central assignments suggested by the teacher are those of translating and solving
equations, the idea that the students most frequently use - and therefore the most acquired
one - would be that of the equation as numerical equality with number to be revealed.

So far we have analyzed the students' interpretation of the definition "equality with
unknown". Which is the teacher's perspective with regard to this matter? Is she aware of
the distance between the equation as a propositional function and the ideas dealt with by
the students? Which is her Inner representation of the equation object? Is it different from
the notion that she uses at the moment of teaching? Is she aware of those differences? If
so, was she able to foresee some way of "negotiating" those differences?

Our observations do not let us answer completely. the preceding .questions.
However, we can uphold that although the teacher has an inner representation of the
equation as a formal object, not only the language used in class but also the suggested
activities, aim to acquire the idea of the equation as numerical equality. Let us see some
examples that explain our statement.

Firstly, the resource of the two-pan balance scale, which is used as a reference of
the equations, is in agreement with the notion of unknown as number to be revealed. In
effect the equilibrium of the two-pan balance scale is much closer to the idea of equality
already given than to a formal equality about which truth or falsity cannot be asserted. In
any case, the two-pan balance scale model is interpreted by the students conveniently
from the idea of equation as numerical equality.

Secondly, the teacher's speech about the teaching procedures to solve first degree
equations would also acquire this idea. "If I add the same number to both members"
says the teacher - "equality is kept". To insist on "keeping equality" and to omit saying
that the operations done keep the equality for the same values of the unknown, reinforces
the idea that, from the beginning, the equation represents an equality among numbers.

All this analysis shows that the observed system intends to present the algebra as a
natural continuity with arithmetics, concealing the true nature of. the new objects. It is
easy to foresee future difficulties in the students' development of new algebraic notions.
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4. The absence of the notion of variable

We mentioned before that the idea of equation as equality among numbers is
opposed to the equation idea as a restriction over a domain, which needs the notion of
vanable. This observation leads us to ask ourselves the following questions:
-Does the concept of the letters as unknowns cause any obstacles (according to
Brousseau) to the idea of the notion of vanable?
-Does the concept of the letters as variables contribute to the break process between
andunetics and algebra, break that is essential to the meaning of algebra?
-ls it possible to aim at the concept of the letters as variables before the students develop
the notion of unknown? By means of which situations?

Although we are not able to answer the stated questions, some results taken
through the exploratory questionnaire let us move further. In fact, hardly anybody was
able to answer an item that requested to write a solution of the equation 3 x + 2 y 7.
Some students "added" another linear equation and solved the system; and others
answered that "it does not have solution": This result can he interpreted from something
already noticed by many researchers, which is the strong devotion to the algorithms that
the students develop during Mathematics learning. However, we also think that the idea
of equation as numerical equality might block the access to understanding the
nature of two-variable equations, since in these ones it is impossible to interpret
each variable as unknown number.

A similar problem with quadratic equations with an unknown could be set forth.

Which is the approach that the observed system makes to the notion of variable? In
the first lesson, the observed system starts by "defining" variable. In doing so, an example
where it is requested to translate into symbols the expression the perimeter of a square

iof side x" is appealed to. As from this point it is "shown" that in the formula p = 4x, "x
does not have a fixed meaning and is, therefore, a variable". In contrast, it is defined that

i"a letter is constant if it always has the same meaning in a certain context". As a result of
this and from the idea of equation as numerical equality with number to be revealed, the
symbol x in an equation would represent a constant!!

On the other hand, it is important to make clear that, in spite of the visible concern
of the system to show the difference between constants and variables, these notions were
not dealt with again in any of the students' subsequent assignments.

5. A poor equivalence notion

The students deal with a restricted idea of the equations equivalence, in agreement
with the idea of the equation as equality with unknown. Indeed, the operations allowed to
solve an equation (to add, subtract, multiply or divide to both members) are so because
the underlying numerical equality is kept and not because equations with the same truth
set are obtained.

As we have already noticed in the above item, the teacher's speech about "keeping
equality" without stating that the truth set is actually kept, reinforces the students' ideas.

iAlthough the teacher would seem to deal with an implicit idea of equation as formal
equality with an associated truth set, her language does not differentiate the formal
equality references from the numerical equality references. What problems would such a
restricted idea of allowed operations subsequently bring?

For instance, it would be "allowed to pass" from the equation x = 2 to the
equation x2 + x = 2 x, since as far as x is a number, "equality has been kept" by
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multiplying both members by it. From this perspective it would be very difficult to
understand the presence of a strange solution.

Another problem that we can foresee and that seems to be related to the
substitution of the notion of "equivalent equations" by the notion of "keeping equality",
appears in the linear equation systems when the students add or subtract two equations
and they replace the two former ones by the one obtained. Of course, they have "kept
equality' with this operation.

6. Break against continuity and fracture

So far we have set forth sonic hypotheses about the possible effects of the
approaches that emphasize the continuity with arithmetics, on the subsequent learning
concerning higher order equations, or linear systems. This "continuity layout" coexists in
the observed system with a treatment that causes a fracture with the students' previous
knowledge. This problem appears in the fact that in our country, the first algebra learning
is at the biegirming of secondary school. Unlike other concept breaks produced within the
same institutionalframe, the break implied by the algebra learning is inserted into another
one, the institutional one (Chevallard,Y.;1985). Particularly, the students are exposed to
changes coming from the differences between the inner representations that the primary
school and secondary school teachers have of the knowledge to be taught, as regards
mathematical objects and didactical objects.

Two observed important aspects - from our point of view - cause a fracture with
the previous knowledge.

a) The first aspect refers to the status that the observed system provides to the
symbolic treatment (in the algebraic sense) by identifying it with the mathematical
treatment. In this way, all the activity previously done by the students is left out of
mathematics, by not being considered symbolic. In that sense it is interesting to highlight
the kind of answers obtained in the exploratory questionnaire from the question "Why do
you think we use letters in mathematics?" A large munber of answers were obtained,
which do not grant any specific use to the letters, but a higher status, more complexity.
The letters appear associated with the difficulty, to the extent where the mathematics
class work becomes not understandable and alienated. Some typical answers were:
-"To reason more".
-"To make it more difficult, and therefore, to think more".
-"To understand more, but it is complicated".

b)The other aspect refers to the solution of equations. We have already pointed out
that within the curriculum the equations first appear in the first year of secondary ,school.
Some teachers, in order to prepare the students better for the "new institution" teach
equations in the seventh (and last) grade of primary school. In this case, the difference
between primary school and secondary school teachers in relation to this knowledge
becomes important. The primary school teachers consider as a valid procedure "passing
from one member to the other one". The official knowledge in secondary school, instead,
takes as a valid procedure the one that comes from a plying the uniform properties to
both members of an equation (of the sum or the product . This of course is a problem, that
becomes complicated because the old procedure is not nown by.all the students.

flow does the system face it? According to the observations made, the students'
previous knowledge is intended to be ignored, restraining its use in order to acquire "the
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new" procedure. Such intent is supposed to beat a very strong inertia, since the students
do not understand why they cannot appeal to the known procedure.

Likewise, once the canceling procedure has been taught, the secondary school
teachers do not arrange the relevant actions so that the students can find that both
procedures coincide (in the .grotuids that make them correct and in the effects they cause).
In this way, not only an initial fracture with the previous knowledge is caused, but also
the canceling procedure does not become a control element for the students concerning
their habitual mistakes or hesitations in the "passing" procedure.

These types of approaches - that emphasize the continuity with arithmetics, and on
the other hand cause a Fracture with the previous knowledge - leave out a matter that we
consider essential to the break negotiation that implies the passing from arithmetics to
algebra: the dialectical game between the new knowledge and the old knowledge
(Douady,R.;1986; Vergnaud,G.;1986 ; Chevallard,Y. ; 1984).

7. The need as a need

From the theoretical frame of the instrument-object Dialectics and the Theory of
Situations, it is clear that in order to cause a break with arithmetics, the algebra must be
presented as necessary. To find didactical proposals that satisfactorily solve the complex
linkage between need and difficulty is a cause for worldwide research and also a future
goal for our work.

On the contrary, according to the observations made, the purpose of the usual
teaching in our country would not be to introduce the algebra as a tool that makes it
possible to solve new problems. In fact, all the word problems set forth in class could
have been solved using only arithmetical resources. When the teacher was inquired about
this, she answered: "I- think that it is better to learn the method in simple situations, in
order to be able to apply it to more difficult situations later".
A.Cortes ,G. Verpti aud and N. Kavafian(1990) notice that while the assignments done by
the students are from the beginning a response to the teacher's demand, their learning lies
on the acceptance of agreement.

The observed teacher, to uphold this acceptance of agreement, explains several
"reasons" in her lessons:
-"In the future difficult problems will appear, for which you will have to know equations".
-"When you have to solve problems with bigger numbers, you will need the equations".
-"If you do them mentally and you reach the wrong result, I will not be able to see where
you went wrong". (expression that also leaves the teacher in charge of the control
resource).

The other great aspect around which the system negotiates the problem ofihe need,
seems to be based on reasons of "higher order": the algebra appears as a way to make
progress within mathematics, but this progress is due to criteria out of the student's
needs.
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This paper reports on an interview study with six principals selected from 16
schools involved in a high school staff development project, "Building Bridges to
Mathematics for All." In past research related to this project, we have used focus
groups, quantitative data, and teacher interviews to ascertain the impact of the
project on teacher beliefs and classroom behaviors. In this study, we interviewed
selected principals to determine their views of the effect the project had had on
their teachers' attitudes and pedagogy and on the mathematics curriculum at their
schools. Results show that the principals felt the project was critical to
implementing "algebra for all" and moving their schools toward reform in their
mathematics curriculum.

Related Literature
Although in the 1986 edition of the Handbook of Research on Teaching, the

chapter on mathematics education (Romberg & Carpenter) hardly mentioned
research on teacher education, our knowledge of mathematics teacher development
has progressed considerably in the last decade. One of the critical issues being
studied relative to staff development for teachers is how one creates a milieu which
fosters change in teacher behavior in the classroom. A number of researchers have
highlighted the importance of teacher beliefs to change in teacher behavior
(Cooney & Jones, 1988; Ernest, 1991). As late as 1988 Grouws pointed out that
there was little information available about the overall design features of inservice
education pyograms which produce changes in teacher beliefs and classroom
practices. He called for careful studies which focus on the impact of various
features of inservice education on classroom practices.

While connections between teachers' beliefs about mathematics and their
classroom behavior have been made (Ernest, 1991) beliefs may also be influenced
by other factors in the context of the school and the classroom. As Cooney (1993)
has pointed out, there are several metaphorical ways of examining teacher beliefs.
Considered in different ways, teacher beliefs might seem contradictory with

* This research was supported in pan by a grant from the Eisenhower Mathematics and Science FA wation State Grant
Program, California Postsecondary Education Commission, project '# 758-7. The opinions expressed in this paper do
not necessarily reflect the position of that organization.
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classroom practice. This view of beliefs has informed our work as we have tried
to ascertain not only what works to foster teacher change, but also what impedes it
in the school setting.

Background
Since 1992 we have been engaged in an extensive staff development program

with high school mathematics teachers, "Building Bridges to Mathematics for All."
The program, associated with a national program entitled Equity 2000, focussed on
new curriculum, updating pedagogy, and examining issues of equity. As part of
Equity 2000 involvement, all of the schools in the two participating districts had
committed to place all ninth grade students in a course at least as high as algebra
1/course 1 by Fall 1994. In addition to extensive staff development intended to
reach all of the teachers, "Building Bridges" provided classroom coaching and
purchase of mathematical materials such as graphing calculators and computer
software to support instructional innovations in the classroom. The program is
discussed. in more detail in Peluso, Pence and Becker (1994).

In this and two other small-scale studies (Becker, Pence & Pors, 1995;
Peluso, Pence & Becker, 1994) we have endeavored to evaluate the impact of the
project on participant teachers. In particular, we have been interested in
identifying specific aspects of the staff development which have helped to change
teachers' beliefs about the teaching and learning of mathematics, and which have
stimulated concomitant changes in classroom practices.

Methodology
In this study we conducted in-depth individual interviews with principals/vice

principals of six of the 16 high schools that participated in the San Jose Equity 2000
Project. These principals were selected to represent schools of diffetent size and
ethnicity. The main purpose of the interviews was to determine principals'
perceptions of the impact of the staff development on their teachers, particularly on
teachers' attitudes and pedagogy, and on the mathematics curriculum being used in
their school. The first author, who is not associated with the "Building Bridges"
Project but is himself a high school principal, conducted all of the interviews.
Interviews were not taped at the request of the subjects, but careful notes were
taken and summaries were written immediately following the interviews.

Subjects. The schools ranged in size from 1200 to 2400 students, with a
minority representation of 40% to 80%. All of these schools are comprehensive
schools serving grades 9-12.
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A total of eight administrators from the six schools were interviewed: the six
principals and two vice principals. The administrator sample included six women
and two men; seven were European-American and one was Hispanic.

Questions. The questions below were designed to elicit responses in areas of
general information, content, pedagogy, and teacher/student attitudes with respect
to the desired outcomes of the Equity 2000 project. A basic set of questions in each

of these categories was asked of all subjects, with followup questions varying in
order to clarify responses as necessary.

General Questions:
Describe the school and student body.
How many math faculty participated in the Equity 2000 institute?
What changes, if any, have you noted in the way your math faculty has

worked together over the past five years?
How have project participants had the opportunity to experiment with new

curriculum and pedagogy?
Where did support for any school experimentation come from?
What constituted any barriers and/or obstacles?
In what ways has the teaching of mathematics changed over the last five

years?
In what ways has available technology been integrated into the math

classroom?

Content Questions:
What mathematics courses are available to incoming students?
What support systems are available for students who have difficulty?
How is the school moving toward an integrated sequence of mathematics

courses?
Have you noted any increase in the number of students taking college

preparatory mathematics beyond the first year?
What provisions are made for special education and limited English

proficient students?
What do you see as the next step to be taken in terms of math reform at this

school?

Pedagogy Questions:
If we were to walk into a math classroom right now, what kinds of things

would we be likely to see?
How aware are your teachers of recent findings about how students learn?

How is this knowledge influencing their use of new pedagogical techniques
such as cooperative instruction, problem solving, manipulatives, and the
infusion of technology?

How are students assessed in their math classroom?
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Attitude Questions:
How would you rate your teachers' understanding of the Equity 2000

goals?
How would you rate their commitment to those same goals?
Which of those goals, if any, do your teachers feel most strongly about?
What changes over the last five years have you seen in the teachers'

expectations for their students?
What do you consider the teacher's role to be in achieving and sustaining

equity?
What role do you feel this project has played in bringing about the changes

in content, methodology and attitudes that you have described to me?
What are the needs now, and how could such a project as this help to satisfy

them?

Results
The responses to the interview questions were examined for patterns; a

selection of the results will be discussed here in the categories outlined in the
questions above, with one exception. When results were analyzed, it made more
sense to group responses in the areas of content, pedagogy and attitudes, and
integrate responses to general questions into these three categories.

Content. All of the schools managed by the principals interviewed had all of
their 9th graders in an algebra program. None of the schools was teaching any
kind of pre-algebra, Math A, or any other kind of math skill-building course.
Algebra was the only selection for incoming students. One of the schools had
implemented this policy and program for the 1995-1996 academic year, three were
in their third year, one was in its fifth year and one was in its 6th year of
implementation. In view of the curriculum materials being used, all of these
schools are moving toward use of more innovative curriculum materials which
attempt to integrate the various strands of mathematics as called for in the NCTM
Standards (National Council of Teachers of Mathematics, 1989).

As all students are placed in a minimum level course of algebra 1/course 1, it
is inevitable that some students may experience difficulty. The principals
interviewed reported the use of some kind of tutoring program to ensure student
success. These efforts combined use of teachers, students, college students and
parents. Each of the six schools had an after-school program, although one had a
pull-out program during the day as well. One school had a special education class
using new curriculum materials, and three schools used new materials in sheltered
classes (those designed for limited English proficient students].
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Although the principals did not report a better success rate with the
implementation of the "algebra for all" policy, they did recognize that the success
rate in algebra I was no less than it had been in remedial courses; therefore many
more of those students succeeding were now doing so in course work of more
depth and rigor than they had previously. In fact, in one district, more African
American and Latino/Latina students were passing algebra 1 than had ever taken
algebra 1 four years ago.

Five of the schools had had "algebra for all" for more than one year, so they
were able to reflect on the numbers of students continuing on to higher levels of
mathematics. All of these schools reported increased numbers of students going on
to higher level mathematics courses, one of the main goals of Equity 2000. The
principals felt that the new curriculum materials, stressing problem solving and
applications of mathematics to the real world, helped their students see the
relevance of mathematics and encouraged that continuation onto higher level
courses.

Pedagogy. The principals' responses to questions on pedagogy reflect either
a reluctance to be very specific or a lack of knowledge of what actually is going on
in the mathematics classrooms in their schools. Or perhaps our questions were not
designed well enough to elicit the kind of information we sought.

There were some reflections on pedagogical aspects of the new curriculum
materials being used. One principal felt that cooperative learning was important as
it would be important to how most young people would function in their future
employment. Two principals saw benefits to the heterogeneous groupings resulting
from the elimination of tracking, reporting fewer gang-related problems and
higher self-esteem among minority students since implementation took place.
Another principal noted that she felt that oral and other alternative assessment
techniques were often better for minority students (especially Hispanic), both in
terms of their immediacy and their suitability to the culture and background of
these students.

However, there were some concerns about these same instructional practices.
While two principals felt that alternative assessment techniques were being used
well by their math teachers, two others reported their teachers as slow to get
started with many of these techniques. And although only one principal felt that
more support for cooperative learning strategies was important, we judged that, in
the other schools, the principals lacked knowledge of the depth of understanding of
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a set of skills needed by teachers in order to fully empower their students through
cooperative experiences.

Another small indication of a lack of knowledge of the mathematics reform
called for in the NCTM Standards (NCTM, 1989) was the fact that one of the six
principals felt that the technology on site was adequate for instructional needs; s/he
was refening to Apple HE labs.

Attitudes. Because of the different implementation timelines, the principals
saw the role of the project in two different ways. Those whose schools were in
their fifth or sixth year of implementation saw the role of "Building Bridges" as
the support for their school's own decision to implement the new curriculum
programs, while those whose programs had been implemented more recently felt
the project had provided the leverage for reform. The one belief common to all
six of the principals was that Equity 2000 was the critical piece in sustaining the
reform effort. None felt their school would have an "algebra for all" policy today
without the staff development and support rendered by the project.

All of the principals felt that 100% of their math teachers had a good
understanding of Equity 2000's goals and of their importance, a finding
corroborated by Becker, Pence and Pors (1995). These goals, however, were
supported by a low of 70% of the math staff at one site to a high of 90% of the
staff at another. Even if not fully committed to Equity 2000, the principals
strongly felt that the project had been essential in getting math faculty to work
together better than they had before entering the staff development program. They
all saw a more common focus shared by mathematics staff, as well as more time
spent by the staff in discussion of how to go about best meeting student needs. One
principal said that her staff was also more open to meeting with math teachers at
other high schools as well as with those teaching at other levels. More educational
conversation and more cohesiveness were highlighted by principals as ways in
which their mathematics faculties had evolved as a result of their project
involvement.

Each one of the principals described their math faculties as split 80%-20% in
their commitment to the NCTM Standards (NCTM, 1989) and the implementation
of their own schools' new mathematics programs. In one school, two teachers
were not using new materials. In the other five schools, the uncommitted 20%
were working at the use of new curriculum but would bale out if given the
opportunity. Principals felt that these teachers had gone along because of peer
pressure and strong support, both provided through Equity 2000 strategies. Such
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project support, the principals felt, would continue to be instrumental in keeping
such instructors on the road to reform. .

In addition to teacher attitudes, the principals noted a better attitude toward
math on the part of students. Although- not aware of gender equity as an issue,
which again might reflect a lack.of knowledge, they did view implementation of the
new math programs as having had a major effect on equity for students
traditionally underrepresented in mathematics.

Next Steps. There were a number of areas of concern expressed by the
principals as they reflected on next steps needed to continue the move toward
reform in mathematics. While the "Building Bridges" program had put particular
stress on implementation of algebra I/course 1, the principals saw a real need to
provide continued staff development to support changes in higher level courses,
especially the broadening of instructional strategies and the integration of
technology. Another principal thought there was a need for closer articulation
with feeder schools, especially with respect to the coordination of mathematics
materials. Interdisciplinary strategies were raised by two other principals as the
next step in making mathematics connections across the curriculum.

Some "next steps" that the principals may not be aware of the need for
became apparent in the interviews. Of the four schools using the College
Preparatory Mathematics program, only one principal recognized that this
program is transitional and that schools using it need to be planning evolution to
other, more innovative materials. Secondly, the principals were very vague in
responses to questions dealing with the success of the programs in their current
state of implementation. It would seem that some evidence that their programs are
going in the right direction is essential.

Conclusions
The observations of these principals give us a glimpse of what a project

supporting mathematics reform might need to include. It is clear they felt that Such

an effort must continue to support teacher risk-takers, concentrate on continued
training in instructional strategies and the infusion of technology, and help
practitioners structure an environment that seeks to include every learner and value
diversity. Further, some of the principals' own responses may point to a need to
better inform them, so that they too may seek to facilitate reform efforts.

One of the most strongly held beliefs about the value of this project, in the
minds of all six principals interviewed, was that it got their math faculties talking
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with each other about the education of their students. This "educational
conversation" produced, they felt, more cohesive departments, a more common
focus, more shared values and a more effective approach to mathematics education.
It may now be time to extend the educational conversation to others who, in turn,
can help to expand, support, sustain and refine the mathematics reform effort. In
the opinions of the principals interviewed, among already proven values of Equity
2000 has been its ability to engender just such conversations.

References
Becker, J.R., Pence, B.J. & Pors, D. (1995). Building bridges to mathematics for

all: A small scale evaluation study. In Owens, D.T., Reed, M.K, & Millsaps,
G.M. (Eds.). Proceedings of the Seventeenth Annual Meeting of the North
American Chapter of the International Group for the Psychology of
Mathematics Education, vol. II. Columbus, OH: ERIC Clearinghouse for
Science, Mathematics, and Environmental Education, 255-61.

Cooney, T.J. (1993). On the notion of authority applied to teacher education. In
Becker, J.R. & Pence, B.J. (Eds.) Proceedings of the Fifteenth Annual Meeting
of the North American Chapter of the International Group for the Psychology
of Mathematics Education, vol.1. San Jose, CA: The Center for Mathematics
and Computer Science Education, 40-46.

Cooney, T. & Jones, D. (1988). The relevance of teachers' beliefs for research in
mathematics teacher education. Paper presented at the Sixth International
Congress on Mathematical Education, Budapest, Hungary.

Ernest, P. (1991). The impact of beliefs on the teaching of mathematics. In
Dossey, J.A., Dossey, A.E. & Parmantie, M. (Eds.). Preservice teacher
education: The papers of action group 6 from ICME 6, Budapest, Hungary.
Normal, IL: Illinois State University, 237-242.

Grouws, D. (May, 1988). Overview of the role of research on mathematics
teachilig and learning in improving research in classroom instruction and
teacher education. Paper presented at the First Wisconsin Symposium on
Teaching and Learning Mathematics, Madison, Wisconsin.

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation
standards for school mathematics. Reston, VA: Author.

Peluso, T.., Pence, B. & Becker, J.R. (1994). Developing a community of risk
takers. In da Ponta, J.P. & Matos, J.F. (Eds.). Proceedings of the Eighteenth
International Conference for the Psychology of Mathematics Education, vol. II.
Lisbon: University of Lisbon, 56-63.

Romberg, T. & Carpenter, T. (1986). Research on teaching and learning
mathematics: Two disciplines of scientific inquiry. In Wittrock, M. (Ed.).
Handbook of research on teaching. NY: Macmillan Publishing Col.

4 - 122

1 '3 0



The Teaching of Mathematics from within the School.
Teachers and Principals as Researchers

Patricia Perry, Pedro Gomez, Paola Valero

"una empresa docente" Universidad de los Andes, Colombian

This paper reports on an actionresearch study with ten state schools in
Bogota, Colombia. Its purpose was to explore the issues involved in secondary
mathematics education from an institutional point of view. The information col-
lected from the interaction with the principal, the mathematics headmaster and
two teachers from each school who participated in a professional development
strategy was analyzed with a hermeneutical research methodology in order to
construct (on the basis of the systemic approach) a model of the Institutional
System of Mathematics Education, and to determine the initial and final states
of the system. Relevant differences were found between the two states. However,
it remains to he seen whether these changes are permanent.

Institutional approach to mathematics education
Some recent studies show a trend towards exploring the issues concerning the teach-
ing and learning of mathematics, which are different from those closely related to the
interaction among teachers, students and mathematics knowledge within the class-
room. In the US, for example, several projects have undertaken the issue of improving
mathematics education within schools in a context of educational reform. The Urban
Mathematics Collaborative (Webb & Romberg, 1994; Heck, 1995) seeks to generate a
change in urban mathematics teachers by stimulating teamwork among teachers of
different schools. The School Restructuring Study (Secada et al., 1995) tackles the
issue of how to reform mathematics at the secondary level, in educational institutions
and mathematics departments, with the aim of developing balance and productivity
among efforts in these two environments. Other projects like The Coalition for Essen-

tial Schools, the New Standard Project, Goals 2000 and the NSF State Systemic
Reform Initiative have taken this approach, most of them from the point of view of
systemic reform (Cohen, 1995). On the other hand, The Teachers As Researchers
Movement, closely related to the above issues, has gained a place in PME through the
creation of a working group (Mousley, et al., 1995).

In Colombia, the 1994 General Education Law and, with it, the whole plan of curri-
cular decentralization, have opened a large space for educational institutions to
assume leadership in the endeavor of improving quality in mathematics education.

Within this context, this study approached some of the issues involved in mathematics
education from an institutional point of view. This institutional approach stressed the
importance of a coherent practice from principals, headmasters and teachers in the

The research reported in this paper was supported by the Corona Foundation and the Colombian
National Ministry of Education.
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construction of a process of change that could influence the quality of mathematics
teaching in schools. As a means to face the issues of school mathematics, analyze
them and influence them, a professional development strategy involving principals,
headmasters and teachers of the participant schools, was implemented. It was based on
the conceptual and methodological principles of actionresearch.

This professional development strategy was based on three assumptions. Firstly,
the school is the space where the relationships among the agents closely related to
mathematics education issues (heads and teachers) are built and evidenced. Coherence
between institutional plans and instructional practice might lead to an institutional
environment that can favor the quality of mathematics teaching and learning. Sec-
ondly, change is made by people and this requires a restructuring process of their
belief systems and of their administrative and pedagogical knowledge. Finally, action
research, as a way of encouraging critical reflection and enhancing the agents' ability
to detect and propose solutions to problems that depend on them, is seen as an appro-
priate method to initiate such a change.

In what follows, the professional development strategy is briefly described, the
methodology used is outlines, a model of the Institutional System of Mathematics
Education (ISME) is presented and, based on that model, the initial (before the strat-
egy) and the final (after the strategy) states of the system in the participant schools are
described.

Professional development strategy
Ten state schools participated in the study. Two teams were formed with participants
from each school. The first one included the principal and the foreman of the mathe-
matics department. The second one included two secondary mathematics teachers.

Both, heads and teachers in their own teams, went through the experience of carry-
ing out a process of action-research. Heads had to identify a particular aspect of the
issues related to mathematics in their own schools, which they had the power and the
will to modify. Concerning this aspect, they planned a specific action aimed at a
change. Then, they implemented it, observed its results and evaluated the effects it had
upon the aspect under consideration. Teachers either individually or in pairs had
to choose a topic from the syllabi of their courses at that time, upon whose teaching
they wanted to improve. It should span, at the most, three class sessions. They com-
pleted the corresponding curricular design and development.

After working for eight months, the teams assembled for presentation of results
and writing of report papers on their experience. Several general meetings were held
for both teams during the eight months. During these meetings heads and teachers, in
their corresponding groups, were given some conceptual and methodological tools for
their project, and had the opportunity of sharing and discussing the different stages of
their project with their pairs. Furthermore, several individual meetings were held
between heads and teachers from each school with the researchers devploping the
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study in order to discuss problems or doubts concerning their projects.

Methodology
Information was collected in the form of field notes, tape recordings, interviews and
documents written by the participants during the professional development strategy.
This information was used to construct the ISME model and describe the system's
states. An hermeneutical research methodology (Addison, 1992) was used. The three
researchers involved themselves in an iterative scheme of generation of transient ver-
sions of the model and the states. Each new version was considered under a critical
dialogue, and nourished by the experience lived in the interactions with the partici-
pants in the professional development strategy. Every opportunity for interaction was
taken as a new chance for generating a better and broader understanding of the reality
under study. Thus, at a certain stage of the process, a certain proposal was tested on the
basis of the researcher's maturing readings of reality. Critical discussion of the degree
of adequacy of the proposals to the reality under examination engendered new ideas
about its fundamental features. These ideas, deliberation about their particular insights
and an attitude of pursuit of an objective consensus within a milieu of critical dia-
logue, allowed the researchers to devise a new version of the model and its states. At
this point a new iteration of the whole process started. This methodology bears some
resemblance to the competitive argumentation method proposed by Schoenfeld and
colleagues (1993) with which several researchers, with different interpretations and
departing from sometimes contradictory evidence, involve themselves in a process of
debate in order to produce coherent consensual explanation of such evidence.

Institutional System of Mathematics Education
A systemic approach was used in order to understand and simplify the complexity of
the institutional reality related to mathematics teaching and learning and as a means to
reveal the acting elements, their meaning and the very gist of their actions and the
potential effects of changing a given relationship among them (Artigue, 1988). Thus,
the idea of the Institutional System of Mathematics Education (1SME) was introduced
to represent this complex reality. Following the methodological principles described
above, a model of the ISME was constructed corresponding to a conception of the rel-
evant aspects of that reality (see figure). It is acknowledged that this is one among
many other possible models of the same reality.

Roles of the
cipal

Role of the de-
partment's head

Heads

Curricular design

Professional Teamwi.rk among
development teacher,

Knowledge

Pruteseamal
practice

chefs Commitment

Faculty's professional I, we

Institutional System of Mathematics Education Model
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In what follows, each element of the model is briefly described (See Valero et al., in
press, for a more detailed description of the model and of the system ideal state).

Regarding heads (principal and mathematics foreman) two main elements may be
shaped. The roles of the principal refer to the principal's leadership and supporter
roles corresponding to his/her understanding of the organization structure, workings
and planning, and his/her ability to supply the necessary resources, organize and com-
mit people into relevant projects (Furtwengler, W. & Hurst, D., 1992). The role of the
of the department's foreman refers to the way he/she assumes a leadership role amidst
the mathematics faculty. The mathematics faculty's professional lore refers to the cus-
toms, ways of life, qualities, trends and preparation concerning the teaching of mathe-
matics inasmuch as shared by the institution's mathematics faculty (Rico, 1990, pp.
36-40; Hyde et al., 1994, pp. 49-50). It reveals itself through three main aspects. The
curricular design as the previous definition of an "operational plan for instruction that
details what mathematics students need to know, how students are to achieve the iden-
tified curricular goals, what teachers are to do to help students develop their mathe-
matics knowledge, and the context in which learning and teaching occur." (NCTM,
1989, p. 1). Professional development referring to the institutional opportunities for
teachers to learn and increase their specialized knowledge of mathematics as well as
of its teaching (Rosenholtz, 1989). Teamwork among teachers as the teachers' willing-
ness and attitude towards exchanging assistance with their colleagues in questions
related to mathematics teaching (Rosenholtz, 1989). Concerning the mathematics
teacher as an individual, the model takes into account three main aspects: The
teacher's beliefs about mathematics, their teaching and learning, his knowledge, not
only about mathematics, but also about mathematics educationas his professional dis-
cipline, and his commitment to his practice, in terms of how much he gets involved,
cares and actually carries out. Finally, all the elements mentioned above influence the
teacher's professional practice. Nonetheless, this factor is not considered as an ele-
ment of the system because it was not analyzed, nor directly influenced during the pro-
fessional development strategy.

Initial and final states of the ISME
Based on the above model, the information collected in the interaction with the partic-
ipants, and the methodological approach previously described, the initial and final
states of the system were determined. These states designate the values shown by the
elements of the model before and immediately after the implementation of the profes-
sional development strategy.

Principal's Roles

Initial State. Principals had difficulties in designing projects and leading their execu-
tion. They partook of a firmly-established tradition of doing things by coercion even if
they made no real sense for their particular institutions. They had very vague ideas
about the issues related to mathematics teaching and learning in their schools. They
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did not have a clear insight of the incidence of institutional aspects upon the problems
and could not face up their responsibilities in this concern. They were not mindful
enough of the importance of the academic functions of the mathematics foreman.
Their relationship whith their own mathematics department foremen was centered
upon administrative issues more than upon academic ones. They supported profes-
sional development through strategies such as encouraging attendance at conferences
and traditional in-service training courses, but were far from believing that the faculty
themselves could carry out their own professional development as a part of their scho-
lastic activities, with the institution's support.

Final State. Most of the principals concluded their actionresearch projects. In some
cases, principals broadened their knowledge about a particular aspect of the issues
affecting mathematics in their own schools and faced up to their accordant responsi-
bilities in them. In general, principals became more perceptive about the meaning and
purpose of their faculty's professional development and encouraged and induced their
teachers to work collectively. In some cases, principals made contributions to the
improvement of the department meetings and showed concern, on behalf of the insti-
tution, about their faculty's professional practice and about the codes and usage that
guide it. They helped improving their teachers' commitment to teaching.

Department's Foremen Role

Initial State. Foremen lacked awareness about the leadership they could and should be
assuming within their faculty. Their relationships with the principals were confined to
administrative issues. They did not influence upon the faculty's professional develop-
ment or teamwork. Their duties were limited to organization of mathematics curricular
design and implementation. They had little impact upon their colleagues' commitment
to the accomplishment of adopted plans.

Final State. Foremen did not show signs of developing an academic relationship with
their principals. They kept adopting passive attitudes, lacking leadership as well as
any status of spokesmen of their teachers in front of the principals. They still were not
inducing their faculty to teamwork. Nevertheless, they acknowledged among their
main responsibilities the devising of an institutional proposal for mathematics school-
ing. At some schools, foremen were starting to bear well upon some teachers' commit-
ment to their practice.

Faculty's Professional Lore

Initial State. Heads, teachers and, in general, schools participating in the study lacked
awareness of being immerse in an institutional lore. Its development and upgrading
were not born in mind when decisions about plans and their implementation were
being made. Teachers did not consider themselves as members of a national commu-
nity of professionals in mathematics education. Overall, institutions lacked opera-
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tional plans concerning the field of mathematics education. 'Their faculties lacked
knowledge, clarity and consensus about the goals to be achieved, the methodologies to
be used and the evaluation procedures. Teachers, as well as heads, were adapted to
faculty qualification strategies whose main feature is the passive transmission and
reception of information. Professional development was managed through traditional
inservice training courses, and was envisioned within the institution (namely, as a
personal enterprise, outside the interests of the institution, requiring interaction with
somebody alien to the faculty), without necessarily serving mathematics curricular
design and development. Teamwork among teachers was roughly absent. Faculty
freehours were scheduled so that they conflicted with any opportunities for teachers
to exchange assistance among them.

Final State. Mathematics faculties at most of the participant schools began cooperat-
ing, assuming teamwork tasks, holding discussions, and showing interest in familiar-
izing themselves with mathematics education topics. This movement even reached
teachers that did not participate in the professional development strategy. On the other
hand, by the end of the study all participant teachers (many of them for the first time)
have had an opportunity to write progress reports and final reports of their own
projects. In addition, several of them had written short papers where they presented
their small actionresearch work. Many of the participants had the occasion to wit-
ness, for the first time, the actual existence of mathematics education as a young disci-
pline on the move that wields concepts, theories and techniques of great assistance in
tackling the difficulties that emerge in the classroom. All participants realized the sig-
nificance of attending qualification programs that contribute meaningfully to curricu-
lum design and development at their institution. Teachers noticed that different
qualification plans influence diversely on their teaching competence. Institutional lore
concerning mathematics schooling had begun awakening due to the new experiences
with teamwork. The latter had also increased the teachers' degree of commitment to
their professional practice. In turn, the commitment stimulated by the professional
development strategy led teachers to teamwork.

Mathematics Teacher

Initial State. Teachers were not aware of holding any view about mathematics and its
schooling. They also lacked any apparent pictures of alternative views concerning
these topics. No survey was carried out of the teachers' knowledge of mathematics.
Nevertheless, interaction with them revealed serious deficiencies in mathematics
teaching know-how and in the knowledge of the field of mathematics education. The
commitment teachers showed to the activities offered during the execution of the pro-
fessional development strategy was illustrative of their commitment to professional
practice. Teachers willingly associated with the study, even when forewarned that they
could not expect any financial or academic bonuses from such an association. Looking
for solutions to their problems was their major source of motivation and commitment.
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Final State. Teachers had the opportunity to realize they do hold views about mathe-
matics and its schooling, just as all other mathematics teachers do. From this recogni-
tion, they generated a selfquestioning process.Through the activities conducted
during the study, teachers had a chance to come upon (what for them represented new)
information about mathematics, mathematics teaching know-how and the field of
mathematics education. Although they found themselves running into a program that
was far from satisfying their first expectations, most of the teachers worked intensely,
taking even pains that were not required of them, and attended the bulk of the meet-
ings. They gained awareness of their responsibilities and their commitment to profes-
sional practice. They were left in a state of uncertainty concerning how to assume such
commitment onwards.

Conclusion

The first result of this study is the proposal of the model for the Institutional System of
Mathematics Education. This model is seen as a simplification of a complex reality
through the selection of the structural characteristics of the system that were found to
be relevant to the eventual improvement of teachers' practice. It presents only the
direct structural relationships among elements. It conforms to a particular ideological
position towards what the system should be, and, in that sense, it is only one of many
possible models of the reality in question.

The professional development strategy departed from traditional inservice teacher
training courses. On the one hand, it involved the principal and the mathematics head-
master. On the other hand, it was centered on the design, development and evaluation
of actionresearch projects produced by each participant.

The, results show that this strategy had preliminary effects on the prinicipal's role,
the faculty's prokssional lore and the teachers' commitment. Whether these changes
are permanent and whether the final state is a stable state of the system, remains to be
seen. Similarly, it is too early to know whether the changes observed may have had
any effects on the other elements of the system, and, in particular, on teachers' prac-
tice in the classroom. Nevertheless, a follow-up made six months after the end of the
study has shown that, in most schools several changes are still on effect, and new ones
have taken place. Firstly, principals continue taking an active leadership role in aca-
demic issues concerning mathematics teaching and learning in their schools.
Secondly, the actionresearch strategy to professional development has been trans-
ferred to other knowledge areas in some schools. Thirdly, in most schools, the mathe-
matics department, as a coherent and dynamic group, has produced written proposals
for new actionresearch projects in mathematics education. This reveals a continuing
interest and commitment from mathematics teachers, foremen, and principals on the
development of the faculty's professional lore and on the improvement of the teaching
practice.
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TEACHERS' CONCEPTIONS ABOUT MATHEMATICAL ASSESSMENT

George Philippou & Constantinos Christou
Department of Education

University of Cyprus, 1678 Nicosia, P.O. Box 537

Abstract. The purpose of this study, which is part of a larger project, was to survey
teachers' conceptions about assessment: its role, functions and techniques practised in

the mathematics classroom. Responses by a substantial proportion of fifth and sixth
grade mathematics teachers to a mailed questionnaire revealed a rather optimistic
picture in most statements of a specially developed scale. Although this particular
group of teachers seems to be well aware of contemporary views about assessment, a

few interviews shed more light and uncovered significant misconceptions and different

understandings and interpretations of basic concepts and definitions. It seems that
most teachers have a rather confused idea about some basic concepts and terms used
in the survey.

Assessment is no longer considered as the final act of the teaching/learning
process; it is rather viewed as an integral part of instruction (NCTM, 1989) and a
necessary means for designing and guiding appropriate class activities and
interactions. The dominance of standardised tests, evident until recently in some of
the leading countries of the world (Stiggins & Bridgeford, 1985), is now giving way
to teacher developed tests and alternative non-test assessment methods. As the wave
of reform sweeps across many countries, it becomes evident that improved
mathematics teaching ultimately relies on the quality of teacher-student interactions.
The teacher is by far the key factor in any effort to improve classroom activities,
while the role of assessment in ensuring that these interactions are meaningful
learning situations is crucial (Webb, 1993).

The growing interest in mathematical assessment and the recently accumulated
research results have led to clearer and functional definitions of related concepts and
to the development of new authentic assessment techniques (NCTM, 1989). If,
however, the bright new ideas are to find their way into the actual mathenlatics
classrooms, it is imperative that we secure and carefully consider a deeper
understanding of classroom teachers' views, beliefs, conceptions and practices so that
we can develop appropriate programmes to change the existing traditional teaching.

From the existing body of research, it has been rather well established that
teachers deVote a considerable proportion of their time to assessment related activities
(Stiggins, 1988), and that assessment techniques vary by subject and age level. There
is also some evidence (from Greece) that teachers have rather positive attitudes
toward assessment (Bamboucas & Troullis, 1993). Yet, despite the volume of related
research, it seems that there is still limited understanding of the ways in which
teachers practise and evaluate their assessment methods, the manner in which they
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view the role and the relation of this process to the total mathematics instruction, and
the nature of their beliefs and attitudes. Even though the emphasis placed by
researchers and educators on assessment is hardly second to any other aspect of
instruction., the affective dimension of the process has not been studied enough, as it
has been, for instance, in the case of teachers' conceptions and attitudes towards
"problem solving".

The purpose of this study was to investigate further practising teachers'
conceptions about this aspect of the teaching-learning process, in order to broaden
our understanding of the classroom "ecology" and hence make the effort of
restructuring mathematics instruction more meaningful. In particular, the following
research questions were formulated:
1. How do teachers view the role of assessment?
2. What are the criteria most frequently used by teachers when grading students?
3. What is the item format most commonly used by teachers in their tests?
4. To what extent does assessment support or relate to instructional objectives?
5. Which are the types of items most commonly used by teacher in their testing?

Methodology

The study was designed to include two levels of investigation: First, the mean value
or quantitative method of collecting and analysing data from a representative sample
of the target population was used. Second, in order to penetrate deeper into teachers'
thoughts, beliefs and conceptions, a small number (8) of semistructured clinical
interviews of selected teachers were transcribed and analysed.

The Instrument developed by the researchers for the first part of the study,
consisted of a four section Likert-type scale with statements allowing for four
possible alternatives (1 for no emphasis placed and 4 for major emphasis), and a fifth
part requesting the subjects to specify by type the items commonly used in their self-
developed tests. Each of the first four sections corresponded to one aspect of
assessment as specified above i.e. i) the Role or function of assessment (5 items), ii)
the Criteria for grading students (6 items), iii) the Item format used in teacher
prepared tests (12 items), and vi) the definition and emphasis of Instructional
objectives (to asses the integration between assessment and instruction) (7 items).
The focus of the fifth section was a description of the Type of items used in class
assessment, thus indicating the level of consistency of professed beliefs with actual
practice in assessment.

The questionnaire was mailed to the total population of fifth and sixth grade
teachers in Cyprus-the reason for this selection being the fact that those are currently
the only grades of elementary school in Cyprus where marks are assigned. A
percentage of 86% (610) of this population (more than satisfactory) responded by
returning completed questionnaires, of which 68% were females and 32% males,
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57% were teachers, and 43% were higher rank teachers-headmasters and deputy
headmasters. The proportion of higher ranks seems bigger than the normal
lower/higher rank ratio, but this is quite natural for the target population, i.e. the
school teachers of the upper two classes.

The responses were classified as positive when the subject's preference was on
the right half of the (linear) scale, i.e. when 3 or 4 was chosen. The "consensus
criteria" defined by Pehkonen (1993) were used, according to which "complete
consensus" means that a proportion greater than 95% of the responses is on the
positive side of the continuum, "consensus", means that the proportion is between
85% and 95%, "near consensus" that the proportion is between 75% and ,85%, and
"lack of consensus" that the proportion falls below 75%.

Results

Responses of-the subjects to the major part of the items of the four scales are
given in the Appendix. The percentage in the final column refers to the agreement
responses i.e. the sum of columns 3 and 4. In this section an analysis of responses by
scale section together with comments and extracts from interviews is included.

An awareness of the Role of assessment was the first aspect of interest. The
items of the relevant section of the scale measured responses to the question "what is
the role of assessment in modifying instruction, developing the curriculum,
diagnosing students difficulties, assessing teaching- learning process, and grading the
students?" (Space was also provided for subjects to include any other aspect they
wished). The subjects expressed "complete consensus" on two out of the five items,
one being that the role of assessment is "to find out students' learning difficulties"
and the other" to assess the effectiveness of instruction" (by almost unanimous
agreement, 99% and 96% respectively). On the contrary, they did not agree (lack of
consensus) that assessment functions include: "modifying instruction", "assigning
grades to students", and "modifying the curriculum" (the agreement proportions were
73%, 53%, and 46% respectively). It seems that the highly centralised educational
system provides a serious constraint not allowing teachers to take initiatives
concerning the curriculum content, even though they can see the necessity. During
interviews all teachers mentioned the diagnostic role of assessment and particularly
"providing appropriate guidance to students-therapeutic work", but they were
reluctant to point out the relevance of assessment to planning of subsequent lessons.
Concerning their eligibility to change the curriculum and in essence the subject
matter they felt powerless. To use the actual words of an experienced teacher:
- A. Because the subject matter is not in my authority.

Q. Is it prescribed from above?
- A. Absolutely, is not for us. I wished I could.

Q. Really? Are you not allowed, for instance, to leave some parts behind?
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A. Well ... certainly. You see, nobody can follow exactly what a teacher does in
the closed class, but ...

Criteria for grading. Grading the students is frequently conceived as equivalent
to, confused with, or at least thought of as the major function of assessment and
evaluation.. The subjects in the study were required to indicate the extent to which
each of the following six criteria is used in their grading: "class participation",
"performance in .classwork", "test scores", "homework assignments", "student's
effort", and "persistence". Their responses indicate that they use a variety of means
or criteria. Indeed the "complete consensus" level was observed in five of the section
items (homework assignments 'was excluded). Teachers expressed their distrust to
homework as a reliable mean to grade students. However, a degree of uncertainty
came to the fore during interviews, as the major characteristic of participating
teachers, concerning assigning grades to students. The following is an extract from
the interview with a competent female headtmaster:
- Q. Which factors do you primarily consider in determining students grades?

A. His/her ability and understanding.
Q. Could you be specific? How about written tests?

- A. Yes, ... as one factor.

A less experienced teacher puts emphasis on the daily interaction with students, he
answered the question as follows: "well, I form a picture for each student from the
daily contact with them, how clever their participation is. If I know that somebody
worth an "A" , I' m not going to change my view even if he/she fails in 2-3 tests".

The composition of teacher-developed test, with a variety of Item format, is
indicative of the depth of their awareness about recent developments on assessment
techniques and the degree to which they teach for higher order thinking and (non-
routine) mathematical problem solving. The relevant scale included 12 items and the
results are summarised as follows:

The subjects did not seem to value the so called objective items, "true-false",
"matching", or "multiple-choice", the agreement proportions were 33%, 40%, and
55% respectively, They also placed limited emphasis on items requiring
"knowledge of concepts and definitions" and items "requiring understanding", the
positive responses found to be only 38% and 56% respectively. Lack of consensus
was also observed on "problems similar to textbook", this being a positive
reaction, but the same phenomenon was also observed on items requiring
"explanation of the solution strategy" and "novel problems".
Near consensus response was observed on items requiring "application of
procedures", involving only "minor variations of textbook problems", and on

:problems with more than one answers". This means that teachers indicate a
positive tendency towards de-emphasising operations and procedures, and an

1 A n 4- 134



attempt to include in their tests problems not similar to the textbook, as well as
items with more than one answer.
Consensus was found on items requiring "application of concepts to novel
situations", a characteristic which is in line with contemporary teaching objectives.
Complete consensus was expressed on none of the items of this section.

At least one contradiction is obvious at the first glance, since any "application to a
novel situation", is .definitely a "novel problem", hence the gap of two levels
between these items (non consensus and consensus) can not be justified. At
Clarification of this inconsistency was one of the objectives at the interviews. Most
participants were able to state the defining characteristic of a novel for the students
problem, but only two out of eight were able to give a good enough example. A
similar finding applies also for the meaning of the phrase "knowledge of concepts"
and "problems with more than one answers". The latter was confused with "open
problem".

The items testing the relationship of assessment to Instructional objectives
called upon subjects to report the emphasis they placed on assessment related
instructional objectives. The responses indicated complete consensus on the following
four statements: "concept understanding", "developing of investigative strategies"; "
problem solving" and "applications to everyday problems". The consensus level
found on the remaining three objectives measuring emphasis on "oral and written
communication", "developing positive attitudes" and "quick and correct application
of procedures" is also considered positive. However, when the interviewees were
required to explain how they develop "oral and written communication" they all
complained that written reasoning is time consuming.
Q. Do you expect students to explain in words what they do?
A. Yes,,quite regularly during class activities.
Q. I meant written, when you are testing your students.
A. No, they don't have enough time. Besides, it will not be easy for most of

them. See, they can not express their thoughts well ...

Classroom assessment practice was surveyed by recording the empliasisVlaced
upon different item types included in teacher-developed tests. Responses were
considered as positive if at least 40% of the test items were stated to involve the
specified characteristic. Three-out of the seven item types included in the scale could
be classified as "traditional", in the sense that they placed emphasis on traditional
teaching objectives. The three traditional items involved emphasis- on "procedures
and algorithms", "similar to textbook tasks" and "single answer questions", and the
proportions of agreement were 29%, 36% and 46% respectively. The non-traditional
items involved emphasis on "concept understanding", "requiring justification of
solutions", "application to novel situations", and "requiring explanation of solution
plan". The proportion of positive responses were 32%, 42%, 45%, and 58%
respectively.
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Although a difference between the traditional and non traditional items
mentioned above is evident, the results on this scale tend to run against the rather
optimistic conclusions drawn from earlier sections. When it comes to reality it
appears that the professed acceptance of contemporary ideas remains empty words. It
is striking that although teachers unanimously (98%) state that in their instruction
they place major emphasis on concept understanding (to mention but one
inconsistency), at the same time 68% of them admit using less than 40% of items
testing the realisation of the same objective. This argument is strengthened further by
the findings of the analysis of the interviews. In fact, many parts of apparently
positive findings tend to become doubtful by the findings from the interviews of
teachers. For instance one of the teachers claimed that she includes only a minimum
number of items similar to textbook, yet she stated that her students are taken by
surprise. The following is part of the conversation:
Q. How do you manage.to have so many non similar to textbook test items?
A. Yes, it's time consuming, but this is the objective, to have some variation.
Q. And what is the student's reaction, when they phase them in a test?
A. You mean if they complain. The truth is that they do, they say that we never

met such a problem before.
Q. So, you come to accept that you are asking for too much?
A. They will finally get used to that.

To test for possible differences in the scale responses by sex and rank order
the multivariate analysis method was applied to data. The comparison showed
statistically significant differences in favour of the female subjects in four items of
the Criteria for grading scale and in oir item of the Item type scale. Similarly,
higher rank teachers were found to hold significantly better conceptions in three
items of the Role of assessment scale, in four items of the Item format scale, and
in three of the Instructional objectives scale. It is worth noting that female teachers
put significantly more emphasis on the development of positive attitudes than the
male teachers. No statistically significant interactions were noticed between sex and
rank position.

Discussion

Much of the responsibility for implementing change "falls squarely on the
shoulders of classroom teachers" (Cain et al., 1994). Everyday teachers gather
information about their students' mathematical knowledge, which they use some way
or other in making significant instructional decisions concerning the design of
learning activities. In this study, we have tried to draw a map of some of teachers
assessment conceptions and practices, limiting the scope of our investigation only to
formal evaluation methods.

Some of the findings seem to support the claim that the subjects are quite
aware of and accept contemporary ideas about the role of assessment, the criteria for
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grading students, the format of the items to some extent, and the instructional
objectives. It should, however, be noted that although this awareness is useful and
required, it does not suffice. Knowing what is appropriate to do is essential but it is
not equivalent to doing that, even if there is the wish. There is definitely a distance
between the statement of intentions, the knowledge and the practice- stating is one
thing, knowing what to do is a different thing and actually "doing it" is yet a third
one. In the particular culture the first step has probably been made, teachers are able
to state the objectives of assessment rather accurately, but they do not seem to
understand very well the meanings and what the implications of these objectives
really are, let alone the application of their professed convictions. The small number
of interviews taken is probably not enough to draw reliable conclusions. Yet one
thing is pretty clear that we have a long way to go.

It still remains for us to examine what is taking place with new dynamic forms
of assessment: observations and interviews, portfolios and jiiurnals, investigations
and practical tasks in order to complete the picture and thence plan for developing the
new "assessor teacher", redesign the teachers' programmes and supplement by
inservice what is now missing from preservice education.
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APPENDIX

Table giving frequencies of responses to the first four scales

no
emphasis

minor
emphasis

great
emphasis

major
emphasis

%

What is the role of assessment in ...

modifying instruction 20 142 316 120 73

modifying curriculum 71 247 199 77 46

finding students difficulties 1 4 86 513 99

assessing instruction 6 21 252 324 96

grading students 43 239 257 60 53

Criteria for grading include

class participation 0 14 237 357 98

performance in class 0 2 186 416 99.5

written test scores 2 30 329 244 95

homework assignments 13 205 315 72

effort put forth 1 35 211 356 94

persistence and patience 5 33 253 313 94

Item format in teacher tests ;''''

objective items (three types) 33 298 202 47 : 41

requiring concept definitions 47 ' 312 169 47. ii. 38

requiring understanding 13 i'i'. 253 307 37 56

appliscation to novel problems 6 '70 331 174 87

application of algor. & procedures 17 80 331 135 83

similar to textbook 20 178 305 78 66

with more than one answers 31 168 297 83 67

Related instructional objectiies

application ofialgorithms 2 347 198 90

concept understanding I 12 134 458 98

developing investigative strategies I 21 215 '369 96

problem. solving 1 4 144 457

oral & written communication 5 36 - 248 345 93

developing positive attitudes 3 4 144 309 93

Lapplications to daily life I .36 248 407 97
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It is well known that students and mathematicians hate idiosyncratic beliefs
about the real numbers. This research reveals confusions about rational
numbers in undergraduates studying to be teachers. Earlier experiences of
fractions and decimals in school (such as the long exposure to finite decimal
expansions and the link between s and 2A ) lead to subtle misconceptions. The
definition of the rational numbers is rarely used to test whether specific
numbers are rational other than those explicitly given as a ratio of integers,
illustrating a wider problem with the use of formal definitions in mathematics.

Introduction

It has long been known that students have idiosyncratic images of real numbers (Tall &
Schwarzenberger, 1978; Davis & Vinner, 1986; Monaghan, 1986; Wood, 1992; Li &
Tall, 1993; Lee, 1994; Romero i Chiesa & AzcarateGimenez, 1994, etc). Given
children's difficulties with fractions, student difficulties with rational numbers may be
expected, although the problems are often unsuspected by mathematicians. This paper
reports students' responses to rational numbers in the third year of a mathematics
education degree preparing primary and secondary mathematics teachers. Their earlier
experiences had included schoolwork using fractions and finite decimals, a first year
university programming course representing numbers as finite decimals, a second year
"Sets and Groups" course defining the rational numbers in the form mln where ni and n

are integers with n#0, and a third year analysis course giving formal definitions of
concepts such as limits and continuity. The small number of isolated courses may lead to
less coherent integration than in specialist mathematics degrees. The students proved to
have idiosyncratic "evoked concept images" (Tall & Vinner, 1981) of rationals.

An analysis of solutions of twenty students on a written assessment in analysis suggested
idiosyncratic concept imagery for rational numbers. For example, in response to the
question

lti
i

i2 if x is rationalExplain why the function f (x)= xs discontinuous for all x7=0,
0 if x is irrational

the student who achieved the highest mark in the group wrote:

"If zero is rational, then ...
If zero is irrational, then..."

This was indicative of subtle conflicts in students' personal imagery of rational numbers.
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The role of definition in mathematics and its relationship to the concept image

The use of definitions in mathematics has two very distinct purposes. On the one hand, a
concept which is already familiar to the student is given a definition to identify the
concept. In this case the concept determines the definition. On the other hand, in formal
mathematics the definition is used to construct the properties of the mathematical
concept which it defines. In this case the definition determines the concept. This reversal
from concept definition to definition concept is an epistemological obstacle which
can cause great difficulty (see, for example, Sierpinska, 1992, p. 47). It is also an
essential component of the fundamental change from elementary to advanced
mathematical thinking (Tall, 1995).

From a cognitive point of view, we will be concerned that the rational number concept
has a concept image in individual's mind that consists of "all the mental pictures and
associated properties and processes" (Tall & Vinner, 1981). The individual's experience
prior to meeting a formal definition not only affects the way in which the individual
forms mental representations of the concepts, but frequently becomes manifest through
the efforts to resolve problems with an inappropriate "evoked concept image".

Vinner (1991, p. 69) considered the concept definition and the concept image as two
different "cells" in the cognitive structure and analysed the introduction of a definition
occurring in three possible scenarios:

(i) the concept image changes to accommodate the definition;
(ii) the concept image remains as it is, the definition is forgotten or distorted;
(iii) the concept image and definition are both present but not linked together.

Our experience is that the situation is more complex. Not only are other variants possible
(eg distorted concept images produced by distorted definitions, Gray & Pinto, 1995) but,
more importantly, different types of connection between concept definition and concept
image typically occur in a single individual. Vinner (1995) discusses how the concept
image may change as a result of pseudo-conceptual thought, which seems on the surface
to be conceptual behaviour but lacks the reflective, analytic control procedures that
characterise true conceptual thinking. It is possible for each individual to have different
types of concept imagery with different links to the concept definition, including:

informal imagery not deduced from a definition, which may be further
subdivided into imagery consistent or inconsistent with the formal theory,
distorted imagery produced from a distorted personal definition or by faulty
reasoning from a correct definition,
pseudo formal imagery, which may seem consistent with formal theory but
is not ultimately deduced from the definition by formal reasoning,
formal imagery deduced formally from the definition.

In practice it may be difficult to distinguish between these possibilities. If no definition
has been given, only informal imagery is possible. (Erroneous informalities should not
be classified as distorted imagery because the student has no formal definition to distort).
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When a definition is given, informal ideas continue to be available and are essential to
guide the individual (including the research mathematician) to formulate new ideas
which can then be deduced formally. If a student remembers a (partially) correct
definition, formal constructions become possible from the (correct part of the) definition,
but quasi-formal and distorted imagery can also occur. The distinction between these
requires investigation of the thought processes which led to their construction.

University teaching often introduces proof in an "informal manner", but this can cause
great confusion in the students as to what it is that that can be assumed and what it is that
has actually been "proved". ThiS is more likely to occur where a "formal" definition
includes "informal" elements, such as the rationals defined in terms of (informal)
experiences of natural numbers.

"Proof" at university is often" bedeviled with a mixture of formality and informality.
Moreover, traditional teaching of number systems at this level usually overestimates
students' informal understanding of numbers, assuming an apparent intuitiveness of the
mathematical real line which does not exist in typical students. There seems to be an
implicit belief that soon the learner will get the meaning of the symbolic representation
by working on it formally, and so time is not spent on suitable discussion about numbers
and relating this to the mathematical meaning of the real line.

Such an approach was perceived and described by one student during an interview:

"I just took the numbers for granted really, the real numbers. When you first meet numbers
and you learn what they are, you learn at some point about natural numbers and rational
numbers and all of that. You feel they're just something you are supposed to know. Whether
you do or not is another matter. The teacher just mentions that we're using real numbers and
you never remember what they are, you just take them for granted."

(Third year undergraduate student)

The long exposure to the approximate arithmetic which students encounter in secondary
school is bound to exert its effects on their informal imagery. Monaghan (1986) found
that students often perceive recurring decimals as dynamic and qualitatively different
from finite decimals, so they are not "proper" numbers.

Our analysis will provide examples showing that a formal presentation of the subject
matter and formal work with numbers did not encourage the students concerned to
reconstruct their concept image from the definition of rational numbers.

Interviews and analysis of responses

Seven students selected for interview were each asked the questions:

"Can you define a rational number?"

"Can you define a irrational number?"

They were then given a list of real numbers to classify as rational or irrational. The list
varied from one interview to another, but always included the number zero, square roots
such as J2 and J4 which may or may not be rational, the special rational 22/ which is
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used in school as an approximation of It, and various finite and recurring decimals such
as 0.97853, 1.41, 0.333..., 0.343232... (the last two emphasised as "recurring").

The seven responses were subdivided for study according to the student's replies to the
opening questions. Three students (A, B, C) gave (subtly incomplete) formal definitions
which proved to contain implicit distortions, three (I, J, K) gave explicit distorted
definitions and one (student X) was unable to recall a definition. None of the students
corresponded to Vinner's category (i) whose concept image changed successfully to take
account of the definition.

Students offering a formal definition

Students A, B and C stated their definition close to the formal definition although all of
them failed to explicitly exclude zero as a possibility for the denominator of a rational:

Student A: "An irrational number is a number that cannot be expressed as two integers, one
integer divided by another integer.... And a rational number can be expressed as two integers
divided by each other, p over q."

Student B: "Well, I would define an irrational as not a rational number, and a rational number
as one which we express as p over q where p and q are both integers. And it can't be
expressed p over q in an irrational such as the square root of two, and It, things like that."
Student C: "A rational number to me is a number that can be created as a ratio of two integers,
I mean, this is straight Sets and Groups. Earlier on my degree course we defined all different
types of number groups, and I know that one off the top of my head. Ratio of two integers, so
any two integers, which could be any positive and negative whole number, the ratio of them is
the rational number. And an irrational number ... is when it's not a ratio ... SoI don't know
if this is helpful at allyou've got natural numbers, which are one, two, three, whatever,your
integers which are negative, plus and minus one, two, plus ... including zero, your rationals
are integers, ratios of two integers. You might have a negative one over seven or whatever,
your irrationals are non-rationals, really. So root two, ... you can't express a number in terms
of a ratio of two integers.

Student C gives additional information to amplify the definition, suggesting that the
definition is not seen as a generative idea from which everything can be deduced, but as
a description which sets the concept in context and may require further explanation.

Students A and B give the most succinct definitions but both experience conflicts as to
whether the number zero is rational or irrational:

Student A: "... nought, I think nought's rational, but I'm not sure. My reasoning for that is
because it's part of the integers, which is why I connect it with the rationals, I think."

Student A seems to be thinking conceptually, using her knowledge that integers are
rationals to come to her conclusion rather than use the formal definition she has given.
But there are signs of inner conflict. When asked for further explanation, she reveals that
she thinks zero might be irrational because of a distorted inference that all rationals
should have a multiplicative inverse. Because zero has no inverse, it could be irrational:

"Why do I think it could be irrational? Because you can't divide by nought.... Could you do
nought divide by any number, will give you nought, won't it? So if you've got nought divided
by ta, for instance, you've got nought. So that way it can be expressed as a rational, but if
you've got n divided by nought, it doesn't work." (Student A)
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Student B built on a distorted conception identifying 0 with the illegal expression %:
Student B: "Nought, I think that's nought over nought.... I think you're allowed to use nought
over nought where .... so it's rational, I think that's right."

When asked for further explanation, she replied:
"... zero, isn't it ? I don't know. Maybe you can't divide by zero, so maybe you should leave
... Maybe it's an irrational. I'm not really surewhether you can haVe a division by zero. ...
Zero divided by zero, normally you can't have zero on the bottom of a division line because
it's undefined, so if it's undefined, then it wouldn't be nought either, so therefore it can't be
defined as p over q. So it must be irrational.... I'm really not sure". (Student B)

The difficulties experienced by students A and B classifying the number zero may both
be related to confusion over the notion of a rational as the quotient of two integers where
the numerator may be zero but the denominator may not. Partially remembered this may
lead to confusion as to whether the numerator or denominator may be zero. The case of
zero may be further compromised when rationals are described as "positive or negative
fractions or zero", treating zero as a special case distinct from familiar fractions.

Positive rationals often have informal every day meanings as fractions:
Student A: "To represent parts of things. You use naturals for the whole things and rationals
for parts of that thing. You split up into whichever number is on the bottom part, say 3 over n,
you have to split your object into ri parts and then 3 of those n parts will make your 3 over n."

But the following lengthy response reveals an uneasy separation between informal
fractions and the technical use of rationals (as in Vinner's category (iii)):

Student C: "I look at it as just a fraction, five eighths.... just using it as five pieces of eight,
that's just a fraction really, that's all it means to me.... The natural number is to me the basis
of maths and you probably use that every day rather, as opposed to five eighths, the fraction
five eighths. To me when I would use natural numbers it would just come about every day,
you are just using so many examples and uses than fractions. I would say so, just off the top
of my head. ... Natural numbers to me are the simplest form of &ups of numbers, there
aren't many complication_s,yoiLdon't have to deal with negatives. ... Definitely, if you say
rational numbir, if you went out into the street and said can you tell me a rational, number, I
don't know anyone; well not many people, would be able to tell you what a rational number
was, in that sense. If you said give me a fraction, I mean it's like when you said what does
that mean to me, that meant a fraction to me, it didn't mean a rational number, that's what it
is. I'd say definitely natural numbers, more than rational and again rational is just a ... to me
it's just another way of saying fractions, a fraction'synoreof an everyday ... more people
would be able to tell you a fraction rather than a rational number.... Again, another differqnce
between fraction and rational number would be, say, realising that, I mean not many people
would give you a negative fraction, which obviously would be a rational number, say minus
five over eight. It's still a rational but they wouldn't necessarily say... I don't think that minus
five over eight is a proper fraction, they would think of minus, you see what I'm saying at all?
When you said what does that mean to me, I didn't think rational number. I just thought
fraction, which is a subgroup, a section of rational numbers, but that's what it means to me
immediately and now I'm putting myself in maths degree mode I'll thinkYes, that's a
rational number.:.. When would I use 0.59? ... Just when you are dealing with decimal work,
a part of again I suppose a fraction of unity, if you like. Or point fifty nine. I'm trying to think
now. You mean as opposed to using this, say,.or you know like using, I mean fifty nine over a
hundred or whether I'd use point fifty nine ..."

Instead of expanding the familiar image of fractions, a separate technical meaning has
been given to rational numbers. The phrase "point fifty nine" instead of "point five nine"
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also indicates informal conceptions that may contain classical conflicts (such as "point
fifty" being bigger than "point five", or "point eleven" being bigger than "point nine").

Although the definition given was used by all three students to describe rational
numbers, it was not used in an operative sense to test whether a given number is rational,
so correct responses could be pseudo-formal rather than formal. In spite of declaring the
finite decimal 0.97853 correctly to be rational, Student A said:

"I'm not sure about ... I can never remember that one."

Student B, meanwhile, classified the finite decimal 0.97853 as irrational, showing that
she does not operate mathematically with the definition, in spite of being aware of it.

Students stating distorted definitions

Students I, J and K were not able to give a formal definition of a rational when asked to
do so. Instead they attempted to describe what they thought a rational number would be,
referring to their informal concept imagery. The dominance of concept image over
concept definition is more transparent in these cases. For instance, students might relate
the notion of rational to their experiences of finite decimals:

Student I: "A rational number is a number that can be defined by ... it's easier to say it's not
an irrational number.... An irrational number is a number with an infinite ... it cannot be
defined to a finite number of decimal places.... Yes, so a rational number would be a number
that can be defined to a specific number of decimal places."

In the absence of an operative definition, Student I made decisions about the rationality
of numbers in a variety of ways. For instance, she classified recurring decimals as
irrationals, and the fraction 22A was also considered as an irrational:

"Because that's the way that it is represented and we've been told all through school life that
71 is an irrational number and can keep going for ever and ever." (Student I)

Idiosyncratic definitions often start by being stated in descriptive form, but the use, or
rather lack of use, of the definition suggests an unawareness of the role of a definition in
a formal context for deduction of the properties 'oPthe concept so defined. It is possible
for a student to have a coherent personal definition and yet evoke other parts:,orthe
informal concept image to give a distorted image. For example, student J's definition
seemed to be appropriate for some use in discriminating rationals and irrationals:

"A rational number is a number that can be written as a fraction. For example, one is a
rational number, because it can be written one over one, a half is a rational number because
that's obviously one over two. An irrational number is the opposite to a rational number, you
can't write it as a fraction." (Student J)

Student J correctly classified "point three recurring" as the fraction "one third", and then
classified "point nine recurring" as being rational, because it was "nine over nine". The
finite decimal 0.97853 and the recurring decimal 0.343232... were then classified as
irrationals because in each case she could not imagine a fraction that could represent it.

Student K's descriptive definition of a fraction gave little opportunity for deduction:
Student K: "A rational number? I know this one, I think. A rational number is a number that is
divisible, say a whole number or a number like a half or seventeen over sixteen or something
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like that. It can be positive or negative, as opposed to irrational numbers which are square
roots of some numbers."

Instead she ignored the definition and classified numbers by evoking idiosyncratic
concept images. For instance decimal expansions of numbers, some finite (1.41 and
0.97853) and some recurring (0.343232...), were classified as irrationals:

"Because when it's in decimals, I can't visualise in my head what it is, so I don't really
know". (Student K)

In classifying point nine recurring correctly as a rational, she presented the argument:
"If you rounded that up it would be a rational number." (Student K)

Further questioning revealed the pseudo-conceptual nature of the thinking based on
informal imagery:

"I don't know, it's like point nine, nine, nine ... is so close to one, but I don't know whether
that makes any difference to a rational or an irrational number being so tiny. I'm just
guessing." (Student K)

Students unable to give a definition

Only one student interviewed could not formulate a definition in words, instead giving
an indication of how she copes with tasks involving such knowledge:

Student X: "I always look these up when I need to know what they are."

But she had an informal concept image of a rational number as follows:

"I think it's rational if it can be written in terms of numbers like that" (pointing to %, a
number in the given list). (Student X)

In her classification, all the decimal expressions were classified as irrationals, so she was
again asked if she had a definition in mind. She replied in a manner which revealed how
she avoided working with such definition:

"Yes, but I don't know if it's right. That's what I remember. When I have to use a rational or
irrational number, I've got a list of all different symbols and what the things mean; and I
usually refer to that when I need to know, but it hasn't stuck yet." (Student X)

She appeared to be working with a mental list of specific examples of irrationals (such as
It and '42) and rationals included numbers such as 3/ explicitly written in fractional

5
form, but if the expression could not be readily converted into rational form by, her, it
was considered irrational.

Conclusion

The evidence presented in this paper reveals the rich diversity of imagery students can
have relating to the concept of rational number. Although three of the seven students
interviewed were able to give an (almost) satisfactory definition of the concept, none
consistently used the definition as the source of meaning of the concept of rational
number. Instead they used their rich concept imagery developed over the years to
produce conclusions which were sometimes in agreement with deductions from the
formal definition, but often were not. Whole numbers and fractions were often seen as
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"real world" concepts, with rationals as more technical concepts (except when positive
rationals were identified with fractions). Long exposure to approximate arithmetic with
finite decimals gives the latter a primacy of meaning that is sometimes erroneously
identified with the fraction concept. The meaning of "rational" may also be interpreted
as the individual's ability to express the number as a quotietit of two integers, so that
familiar decimals such as 0.1 or 0.333... are interpreted as rational, but less familiar
decimals (particularly recurring decimals) may not be.
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FOLDING BACK TO COLLECT:

KNOWING YOU KNOW WHAT YOU NEED TO KNOW

Susan Pine Lyndon Martin Tom Kieren

University of British Columbia Oxford University University of Alberta

Abstract

Folding back is one of the key characteristics of the Pirie-Kieren theory for
the growth of mathematical understanding. This paper looks at one aspect of this
characteristic, that of "collecting". This phenomenon occurs when students know that
they know what is needed, and yet their understanding is not sufficient for the
automatic recall of usable knowledge. They need to recollect, that is to re-collect, to
collect again some inner layer understanding and consolidate it through use at an
outer layer in the light of their now more sophisticated understanding of the concept
in question.

The notion of 'folding back'

The "Dynamical Theory for the growth of mathematical understanding" which
has been developed over the last nine years and aspects of research about which have
been discussed at PME meetings' differs from other views on the nature of this
phenomenon2 in that it characterises growth as a 'whole, dynamic, levelled but non-
linear, transcendently recursive process' (Pirie and Kieren, 1991). The model
developed to represent this growth contains eight potential layers of informal and
formal mathematical understanding actions for a specific person and of a specified
topic. These are named primitive knowing, image making, image having, property
noticing, formalising, observing, structuring and inventising.3 A diagrammatic
representation of the model is provided by eight nested circles, which illustrate the
fact that growth in understanding is neither linear nor mono-directional; each layer
contains all previous layers and is included in all subsequent layers. Growth
therefore is the result of a continual movement back and forth through the layers of
knowing, as individuals reflect on and reconstruct their current knowledge.

The metaphor of recursion is used to highlight the fact that the dynamical
understanding notions of a person involve states which differ in character but are
self-similar. A person's current understanding action in some way acts to elaborate
previous states and integrates them in the sense that they are called into current
knowing actions.

A key feature of this theory is therefore the idea that a person functioning at
an outer level of understanding will invocativel? return to an inner level. Such a

For example, Kieren and Pine, 1992, Kieren, Reid and Pixie, 1994
For a review of these see Pixie & Kieren, 1994.
For a more complete description of the model see Pixie & Kieren, 1991.
Invocative here is used in the context of the model to describe a cognitive shift to an inner level of
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shift is termed 'folding back'. When faced with a problem at any level that is not
immediately solvable, an individual needs to return to an inner layer of
understanding. The result of this 'folding back' is that individuals are able to extend
their current inadequate and incomplete understanding by reflecting on and then
reorganising their earlier constructs for the concept in question, or even to generate
and create new images, should their existing constructs be insufficient to solve the
problem. This the inner-level activity is not identical to that originally performed
by the students, however. They now possess a degree of self-awareness about their
understanding, informed by their operations at the outer level' and so they are
effectively building a 'thicker' understanding at the inner level, to support and
extend their understanding at the outer level to which they subsequently return. The
theory suggests that for understanding to grow and develop folding back is an
intrinsic and necessary part of theprocess.

It is the purpose of this paper to distinguish what we see to be a particularly
important form of folding back which we are calling 'collecting'. Folding back to
collect entails retrieving previous knowledge for a specific purpose and re-viewing
or 'reading it anew' in light of the needs of current mathematical actions. Thus
collecting is not simply an act of recall, it has the 'thickening' effect of folding back.
In what follows we give examples of collecting, distinguish it form other forms of
understanding actions and discuss how teachers might act to occasion such folding
back to collect. This extends the concept and uses of folding back as presented in
Pirie and Kieren (1994) and Kieren, Reid and Pirie (1994) and extends our
discussion of interaction and understanding (Kieren and Pirie, 1992; Pirie and
Kieren, 1992).

Collecting from an inner layer

Of particular significance in the data relating to folding back is the occurrence
of a number of cases where following a shift by the learner to an inner layer of
understanding there has not actually been any observable learning activity, in the
sense of any visible reorganisation or reconstruction of existing constructs nor has
there been any generation of wholly new understandings. Instead of working on
these existing ideas, the inner layer activity has been more a process of finding and
'collecting' an earlier construct or understanding and then using or re-reading this as
useful in a new situation.

To illustrate the distinctions we are making here, we ask you to consider the
following examples of three pupils tackling the question: 93 47 = ?

Jasmin: So, three take seven, can't do (pause) nine becomes eight, thirteen take seven is six
(pause) and eight take four is four, gives forty six.

understanding. An invocative intervention is one which promotes such a shift.
Von Glasersfeld (1987) talks about 'operative awareness' and 'self-reflection' and suggests that 'what the

mathematics teacher is striving to instill into the student is ultimately the awareness of a dynamic program
and its execution.'
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and
John: Hmm, three take seven (pause) hang on seven is bigger than three, I can't do it, if

it was seven take three it would be OK....(puts hand up and teacher comes over) I can't do this

'cos seven is bigger than three so you can't take it away.

Teacher. Could you do something to the nine and the three?

John: 'erm, no, I dunno, I can't do it.
Teacher: OK then, I'll get the rods and blocks and we'll make ninety three and forty seven.
They then work with the Cuisenaire rods and use these to solve the problem.

and
Paulo: Three take seven, can't do (pause) no, you can do something to the nine and the

three and borrow or tens it or something, lemme look. (He opens his work book and flicks

through it). Yeah, that's it, make the nine an eight (pause) borrow ten so we get thirteen take
seven is six. Now the other bit is eight take four is four, forty six.

The above examples are based on classroom events, and are offered to clearly
illustrate different ways of thinking and working on the same problem. Jasmin has
no difficulty in solving the question at all. She has the necessary understanding
instantly accessible and the process she uses is essentially automatic. There is no
necessity for her to fold back.

John however cannot solve the problem, it is not clear here whether he has
met a question like this before but cannot now solve it or whether subtraction
questions of this type are new to him. What is clear, however, is that either he does
not have the necessary understanding or that his understanding is not well.enough
developed to allow him to use it. Instead, prompted by the teacher, he folds back to
perform more image making, either to build a new image or to enhance an existing
one, perhaps by working on his image for subtractions where the unit subtrahend is
larger than the unit minuend. John needs to do more mathematical work at an inner
layer before he will be able to build for himself an algorithm to answer the question.

When Paulo comes to tackle the question we see something very different in
his thinking and working. He too cannot immediately solve the question, he does not
have the automated ability to instantly use a process in the way that Jasmin did.
Neither however does he fold back in the same way as John, to construct or modify
an image. Paulo has an image involving the reconceptualising of the numbers that he
believes will allow him to solve the question, but he needs to fold back to the level of
image having in order to retrieve this image, re-view its properties in terms of the
specific task at hand, and then be able to use it. There is a sense of him knowing and
being aware that he has the necessary understandings but that they are just not
immediately accessible and thus he needs to fold back to his more basic
understanding and in some way recollect or 're-collect' it for use in his current
thinking. Although initially it may appear that he has a lack of understanding of
subtraction this is not actually the case; after successfully 're-collecting' the image he
needs, he is able to correctly complete the question using his existing understanding
of the concept. His language allows us to assume that he is not blindly applying, by
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rote copying, a given algorithm. He has recollected the understanding process which
legitimates his subsequent action of subtraction.

It is important to note that the process of 'collecting' is a mental one. Although
here it is accompanied by Paulo searching his workbook, this is not essential to the
idea, it can equally be performed simply through the searching of ones thoughts.
The workbook here is an aide-memoir, it is not his understandings. The major
difference between this and the folding back of John is that the inner level activity of
Paulo does not involve a modification of his earlier understandings. His working
involves him, instead, in finding and recalling what he knows he needs to solve the
problem. He is very consciously aware that this exists. He collects his inner
understanding and consolidates it through intentional use.

The rest of this paper is concerned with illustrating this phenomenon of
'collecting' as it happens in the classroom for a number of different students. The
examples are chosen to demonstrate some of the key features of folding back and
collecting, and to indicate the varied ways in which students carry out the process
and various teacher actions which facilitate it.

'Collecting' in the classroom

In the first of the following examples students are seen successfully collecting
inner layer understanding and using this to continue working. In the second example
the two pupils are initially less successful in doing this and provide a valuable insight
into their way of thinking and their difficulties as they struggle to find and collect
what they know they need.

The first extract is taken from a ninth grade lesson. The pupils are of average
ability and have been set the problem of finding out the area of a segment of a circle.
The teacher has simply introduced the problem by drawing a circle on the board,
marking a segment and asking the pupils to find the area of it. This transcript is
from when the pupils begin working:

Rosemary: There must be something on it in here. (Pause as she flicks through her text-book)
I dunno (in doubtful tone), I'm looking for the area section.
Kerry: (laughs) Area is page a hundred and thirteen (she turns to this page in her book ).
R: Got it.
K: There, it's half the base times the height.
R: No, (pause) we need ... (pause) It's pi r squared isn't it and erm....(pause as she
looks through book again) Here we are, look here we are, radius and diameter so it's...it's
Ipagel a hundred and twenty one. Circumference equals two pi r squared. No, no, no, that's
wrong, two pi r. Then area equals pi r squared.
K: No, but we don't want ..
R: So, which is three hundred. (she is working with the numbers given in the book's
example then returning to the teacher's diagram which has no given dimensions) No, that's
wrong. Lets cut a quarter just to make it easy...
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Here the teacher has created a situation where the pupils are able to begin
Working in whatever way and at whatever level is appropriate for them. However,
her method of setting up the question suggests that she intends the students to begin
by making an image for the area of a sector of a circle and then later to use this to
find the area of the segment.

Before Rosemary begins to work at making an image for the sector of a
circle, however, she folds back'to her primitive knowing, searching for "something"
useful and applicable to the problem. This shift appears to be self invoked, that is to
say there has been no deliberate external intervention to cause her to decide to search
her textbook, although obviously the question and therefore the teacher have
contributed to this occurring.'Although Rosertiary clearly sees a need to draw on her
primitive knowing and to use previous understandings in this new topic she is
initially very unsure which aspects of her primitive knowing to actually fold back to
and her thinking is unfocused in its nature. She says: "There must be something on it
in here" without being specific. After a pause, however, she tells Kerry that she is
looking for the 'area section'. She has decided that she needs to calculate the area of
a circle. She finds this section in the book, intending to search for the required
formula, confident that she already 'knows' it and that having re-collected it she can
return to image making. She expects to be able to use her primitive knowing to
continue working, in a similar manner to Paulo in our previous example. In the later
stage of the extract we see that Rosemary does find the information she is searching
for (both internally in terms of her own understanding and externally and physically
in the text book), She 'collects' this area of a circle formula, taking it back to the
level of image making where she attempts to continue working. In fact, though, she
finds that she cannot automatically use her formalised rule to find a numerical
answer, as the problem the teacher has posed gives no dimensions fopthe circle.
None the less, her final.statement here, "Lets cut a quarter just to make it easy" is
evidence that she is now thinking about the question of finding the area of a sector.
She is seeing it as a portion of the whole circle, that is to say she is constructing an
image for the notion of 'sector', and she suggests that they work with a simplified
initial example that will make it possible to use her recollected understandings.

The images that Kerry and Rosemary form initially are interestingly different
from one another. The comment by.Rosemary concerning the "area section" has a
marked effect on the thinking of Kerry and as a consequence of this pupil
intervention Kerry too folds back to her primitive knowing. However, her shift is
more intentional, she goes directly to the concept of area of a triangle. This suggests
that prior to folding back she perceived the area of the sector of a circle as being
triangular in form, and attempted to collect her understanding of triangular area in
order to make it possible to work with this image for a sector. For her too, the
formula she needed was not automatically accessible. At the end of the extract Kerry
still seems to be thinking about her area of a triangle concept and later talk does
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confirm that she was still thinking, at this point, of the sector as a triangle with the
arc as its base.

Both students have "collected" inner understanding which they attempt to use to
increase outer understanding. But the knowledge and understandings they collect
result in differing ways of making an image of a sector. Both girls folded back to
collect on the occasion of the given problem. Both then acted to reformulate
previous understandings into an understanding of a sector. But their collecting led
them to different understanding actions, just as their perceptions of the problem
invoked different collectings.

The remaining extracts are taken from a teaching session with two twelfth
grade pupils, Simon and Ann. They are working on calculus and within this topic,
on the concept of differentiation from first principles. In order to do this the
teacher has folded them back to work on the necessary primitive knowing, in this
case on making an image for the concept of limits. They have already answered a

number of numerical questions and are now trying to solve-h+/12h2 . Their initial step

is simply to replace h by zero:

0 0
Ann: It's nought divided by nought...(she writes: and )

0+2x0 0

Simon: Yeah, but you're saying what's nought divided by nought? Is it nothing or is it
infinity? How many nothings in nothing? Is there none or is there an infinite number?

Is it one? Is there one nothing in nothing?...
S: It's not one, there's not one nothing in nothing...

A; No, but if you go two by two (pause) over two, it's one.

S: Its one. That's different though, nothing's nothing, nothing's totally different.
A: I suppose (pause). Its nothing or infinity or one, we haven't decided.
S: Its not one...

The problem here has been caused by the fact that the "h" on the bottom of the
rational expression leads to a division by zero. With their. present image for finding
limits they are lead to replace h by zero, and they are left with a situation that they
cannot solve. Their difficulty here has two aspects. Firstly their existing
understanding of limits is insufficient to allow them to solve the question and
secondly they do not use the necessary algebraic primitive knowing to allow them to
modify their image making. Both pupils are seen folding back to their primitive
knowing of arithmetic. The way in which the two pupils then work, though, differs.
Simon is very much trying to retrieve a fact at this inner level, he 'knows' about
infinity and zero and seems to have images for these as numbers with particular
properties that differ from other numbers. Although he can call these images to
mind he is left being able to state what he has recalled but unable to apply it.
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With Ann the situation is different. She too folds back to her primitive
knowing but she does not draw upon the same memories as Simon. Instead she folds
back to an understanding of a property of division and moves out of the topic of
limits to work with this property in an attempt to be able to collect her existing
understanding and use it anew. She suggests its application to the particular case of
"nought divided by nought". Simon is aware of the inadequacy of this notion and
says 'nothing's totally different', but cannot offer an alternative idea and both
students are effectively unable to proceed.. At this stage the teacher intervenes:

Teacher: Right, you can't actually give me an answer to it as it stands? In fact can you do
something to that? (pointing to original expression in "h"), I mean what's the problem out of here
is the zero on the bottom isn't it? 'Cos you don't know how to divide by zero, you don't know,
as you say, how many nothings there are in something, OK? Can you do something to this? (the
original expression) Can you simplify that in some way?

Ann: You can knock them off you see...that's what we can do can't we? you can do that,
you can make it h over h plus bewaaaa we've got two h squared, knock off one h squared, get h,

hxlr h
h plus h squared. (She writes: and

h+ 2(h x h+ h2
--)

Simon: Right so h plus...(he is writing here as they work)

A h times h, so that's (inaudible) times h times h. Knock off erm...
S: See I've got h plus h squared over h, that's still not right...
A It's exactly the same as it used to be, erm well surely there's something we can do
with these can't we? So it's still nothing divided by something, you divide it by nothing, no it's
nothing...

T:
h

Are you actually happy with what was going on here (pointing to h+2(hx) cos I

wasn't quite clear what was going on?
T: [...] why were you able to cross that out with that?

The teacher here has recognised the problem the pupils are having and
initially validates this by saying "cos yOu don't know how to divide by zero.' She
makes an intentionally invocative intervention to get the pupils to fold back again to
their primitive knowing, but this time the teacher is able to give the intervention a
more explicit focus than the printed question had provided. She asks; "Can you do
something to this? Can you simplify that in some way?" The language here is a
prompt to particular arithmetic/algebraic techniques. The word "simplify" seems'to
provide the invocative trigger for Ann and Simon. They fold back to their primitive
knowing and collect from this inner layer their method and understandings of
algebraic manipulation, which they proceed to work with while trying to construct
an image for the notion of limits. Unfortunately it is evident that their algebraic
understanding which they collect is either incomplete or inappropriate to the task at
hand. Hence they will need further and other image-making including other re-
collecting in order to proceed.
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Implications of 'collecting' for learners and teachers

These examples have been selected to illustrate students folding back not to a
reconstructive inner level activity, but to select and read anew for current use
knowledge and understandings which they did not have available in algorithmic or
definitional form. We call such folding back actions 'collecting'. As is obvious
from the examples, the usefulness of this collecting in on-going understanding is
dependent on what is collected and how it is read into the new situation.

Interaction with materials, particularly personal notes and previously read
texts, and with other students obviously affect this collecting. Thus a teacher who
promotes writing about ones understanding, careful reading of texts and student
discussion indirectly provides the ground for such folding back to collect. In
intervening with Ann and Simon, the teacher directly promotes folding back to
collect in a particular way by pointing out that algebraic simplification is needed.

Thus both the general practices of the teacher and students and specific
interventions of the teacher act to invoke collecting. But it is of course, the
subsequent collecting and further understanding actions of the students, rather than
the intervention, which determines how their understanding in action will grow.
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This paper considers the quality of images described by children at extremes
of mathematical achievement. Two groups were presented with auditory and
visual stimuli and asked to consider the images prompted by them. Using the
grammatical notions of noun and adjective, we consider the qualitative
differences in the properties and relationships identified. The similarity and
the differences identified between images of concrete nouns and images of
numerical nouns are illustrated. High achievers concentrate on relationships
and abstract qualities of concrete, numerical nouns, icons and symbols. Low
achievers highlight surface details and emphasise concrete qualities of concrete
nouns and icons and see numbers as adjectives associated with concrete nouns.

INTRODUCTION
The encapsulation of arithmetical processes is regarded to be fundamental to the
development of numerical concepts. Such encapsulation may be seen as the "re-
concretising" of what are essentially abstract aspects of mathematics; the concept of
five, abstracted from the process of counting five things, is identified through the label
`five' and the symbol 5. An action becomes an "object of thought" (Piaget, 1985, p. 49),
an abstract noun associated with a numerical symbol which ambiguously represents
process and concept: a procept carrying concrete and abstract ideas.

Concept formation in number development is seen to involve generalisation and
abstraction from actions on physical objects. An underlying assumption in cognitive
development is that eventually pedagogue and learner share common ground based
upon their shared perceptual experiences. These experiences may be shared through
actions on objects, for example counting, and the iconic and symbolic representations
that consolidate and represent a compression of such actions. However, it is
hypothesised within this paper that an understanding of the objects of action, may
strongly influence the quality of encapsulation.

The paper considers children's imagery as it is exposed through verbal description. To
gain insight into what children choose to communicate when asked "What comes into
your mind when you hear the word... or see the icon... or symbol...", we take the view
that an image is mediated by description (Kosslyn, 1980; Pylyshyn, 1973). Thus we
rely extensively on language, but we realise that no precise claims can be made about
the exact nature of the images. It would appear that differences between high and low
achievers are not solely due to their ability to interiorise actions. We will suggest that
the encapsulation of different objectsincluding mathematical onesand/or the
encapsulation of different components of objects may have a large part to play in
mathematical achievement. Though children may look at the same thing with their
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"minds eye" they may see, use and manipulate things so differently. This may have
consequences for their mathematical achievement (Gray & Pitta, submitted).

Identifying Mathematical Objects

We suggest that levels of abstraction are dependant upon whether or not mathematical
objects are perceived to be real, and thus named as nouns, or whether they are
associated with other objects and may be more adjectival in quality. Pimm (1987)
suggests that such complex shifts are indications of the specialised use of mathematical
ideas.

Contemporary theories of cognitive development in number may be associated with the
Piagetian view that numerical concepts arise from internalised actions; processes
become encapsulated as concepts. Such a notion may allow us to refer to numbers as
mathematical objects and talk about them as if they were real things. Dorf ler (1993)
suggests that the existence of such an object may not be needed; in reviewing our own
thought patterns we may not so much focus on an object but on the many relationships
associated with it. However, "it" implies that such relationships are associated with a
subject or object of discussion. Gray & Tall (1994) indicate that the flexibility
associated with numerical relationships is crucial to the notion of proceptual thinking.
To develop such thinking there is a need to recognise what the objects of mathematics
are, to name them and to organise our knowledge about the relationships between them.

RESEARCH METHOD

In the belief that images created for mathematical items bear similarities with those
images created for non-mathematical items, twenty four children were selected from
within in a "typical" school of the English Midlands to describe images associated with
mathematical and non-mathematical nouns and a range of symbols and icons. The
children represented the age span 8+ to 12+, thus providing a sample size of six from
each year, three low achievers' and three 'high achievers'. Achievement was measured
by children's levels in the Standard Assessment Tasks of England and Wales (SCAA,
1994) or scores obtained within the Mathematical Concepts and Skills components of
the Richmond Attainment Tests (1974). Children were interviewed individually for half
an hour on at least four separate occasions over a period of eight months.

Children were presented with a range of auditory and visual items prior to mentally
solving a bank of elementary numerical expressions. Here we consider the results of the
auditory and visual items those within the numerical component being reported within
Gray & Pitta (submitted). Responses were obtained using semi-structured interviews
recorded through field notes and audio and video tapes. At each interview children
were asked to talk freely about their imagery and what came to mind with each item.
The auditory ones included common nouns such as "ball" and "car", and abstract nouns
such as "number", "fraction" and "five". On presentation of with each item children
were asked to talk about their first image. Then, at a later date, they were asked to
provide a "explanation" that would help a martian understand it. The visual
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components, presented on a separate occasion, included symbols such as "5", 3 + 4, and
3

, a and icons such as 11:01 (two quarters), (dancing man), . -,(marbles) and

honeycomb).
Table 1 highlights the most powerful descriptive concepts and categories used for a
discussion of the results.

Auditory Items Symbolic /Visual Items
I. Not Known Unable to give meaning or any

sense of recognition
Unable to give meaning or any sense
of recognition

2. Associations and
contextual

Child unable to pinpoint meaning
child conjectures and provides an
associative theme or context.

Child unable to pinpoint meaning
child conjectures and provides an
associative theme or context.

3.1 Single example Single example that does not include
symbol <'(..:' - 4'

3.2 Multi examples Several examples of the item
3.3 Symbolic examples Symbolic references with general

characteristics:yrototypical examOe
4.1 Visual concrete

examples.
Details of visual characteristics
given. Descriptive.

Details orvisual characteristics given.
Descriptive.

4.2 Imaginative
Extensions

Item forms basis for imaginative
and/or concrete extensions.

Item forms basis for imaginative
and/or concrete extensions.

4.3 Insight to abstract
qualities.

Descriptions of non-visual
characteristics. Insight into meaning
and relationshipstend to resemble
definitions

Description of non-visual
characteristics. Insight into meaning
and relationshipstend to resemble
definitions.

5.0 Proceptual
interpretation.

Emphasis on equivalence and
interpretation.

-Process and concept described.
Examples of equivalence and
interpretation

Table 1: Classification of responses to auditory and visual items

RESULTS

Because of space limitations we present just an outline of the results expanding where
necessary to support later discussion.
1. Images associated with verbal items.
Figure 1 shows the classification of children's responses to auditory items and provides
an indication of how they interpreted the nouns. The grouped responses, U , indicate
where over 25% of the total of either first image or martian explanations fall into
particular classifications (12 responses for each item, number of responses in each
sample 96)

The first images of the low achievers' tended to be either 'association' or 'single
example'. The former providing some indication of episodic memory, for
example, "people playing football" (ball) or the recollection of personal events, for
example, "Reminds me of a friend. She was five and played with me, then she
moved" (five). Single examples included, "my dads car, two seater", "a blue car",
'figure 3", 'figure 5". Images classified as 'visual/description' were quite strongly
linked to "five". Several of these were related to the way the five was written.
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Figure 1: Classification of children's responses to auditory items

The low achievers explanations for the martian included an extensive number of
surface details for the common nouns. Phrases such as "squares with patterns", and
"different colours", helped to describe ball, whilst surface details such as "windows",
"seats", and "boot" were extensively used for `car'. 50% of those whose initial images
for the word 'ball' were associated with "football", provided explanations based upon
the visual characteristics of a football. The abstract nouns evoked a range of
responses. The dominant description for the word `five' was "number" and it was
strongly associated with other objects, for example, "my sister is five". It consistently
had a concrete context placed upon it, more-so than the other items. `Number' was
either associated with mathematics or described by the visual properties of individual
symbols "some are bent and lines, some are circles". `Fraction' was described as "a
number on another number", "half a numbernumbers with a line between".

Higher achievers also gave `association' or `single example' in their first responses to
the common nouns but martian explanations involved a 100% shift towards
descriptions based upon abstraction and non-visual qualities. Other items were
extensively described in terms of 'symbolic' image or 'qualities with insight', the
latter dominating the children's descriptions to the martian.

It may well be that the lower achievers provided better descriptions to the martian since
the greater proportion of their information was related to visual attributes or the use of
items. Frequently, particularly with the common nouns, they indicated that they would
show a picture or a model. High achievers, by providing 'qualities with insight',
frequently ignored the concrete and more fundamental characteristics through which
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the item may be recognised and focused immediately on deeper qualities.

2. Images associated with iconic representations and symbols

Figure 2 shows the classification of children's responses to visual items. The grouped
responses, I= , show where over 25% of the total of explanations fall into particular
classifications (12 responses for each item, number of responses in each sample 120).
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Figure 2: Classification of children's responses to symbolic and iconic presentations (Percentages)

Low achievers had more uncontrolled reaction than high achievers to the visual
items. The four iconic representations, 'marbles', 'two quarters', 'honeycomb' and
'dancing 'man', were strongly associated with 'imaginative description'. They were
generally considered in an informal and isolated way. Detail was added as if they
were "pictures out of focus". The children's efforts were directed towards inventing
a story about them and giving each "picture" colour through surface details. Though
the descriptions used a variety of contexts they were divorced from formal abstract
vocabulary or notions such as number or shape.

High achievers tended to look behind the icons and discuss their qualities with an
insight that, where appropriate, had mathematical overtones. They recognised that
icons could represent an idea. Those that could be associated with mathematics, for
example, 'marbles', 'honeycomb' and 'two quarters' were described using formal
mathematical language and the children provided extensive evidence of their ability
to give a description of the non-visual characteristics. (Of course we are aware that
these children may have anticipated the nature of "favourable" responses but as is
indicated in the discussion the development of their responses changed with item
difficulty). However, irrespective of age, the low achieVers provided no indication
that they were attempting to provide favourable responses.

As they had shown with the numerical nouns, the low achievers extensively associated
the mathematical symbols with personal detail and episodic memory. For example,
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the symbol 5 was strongly associated with somebody who was five, "someone is five
years old', "the five on a birthday card". The 'imaginary extensions' given for 3 + 4
indicated the inclusion of concrete examples such as "apples ", "sweets" ,"chocolate".
In essence these children need to make reference to other concrete nouns when using
numerical nouns

The high achievers consistently considered the underlying qualities of the symbols
and in several instances provided examples of proceptual thinking, for example 3 + 4
was identified as "three over four, 3/4's, 75%, three out of four". The children
appeared confident in communicating their knowledge of abstract numerical nouns.

DISCUSSION

When directed towards a particular word, icon or symbol there are an indefinite range
of conclusions that the child could have drawn from the event. The children's mental
representations of any concept appear to possess similar characteristics. Either the
children direct attention towards its core aspects the essential features or definitionor
they direct us towards identification features through which we may recognise instances
of the concept. However, the properties of the former may be different from those
associated with the latter.

The similarities in the children's descriptions of imagery are remarkable both for their
consistency across the range of items presented, and for the differences they display
between the high achievers and the low achievers. We consider these by looking at each
group of itemswords, icons and symbolsseparately and presenting examples which
highlight the qualitative differences between the children.

Looking at the Words
First we look at the word `five'. It tells us how old or how many of something. The low
achieving children provided comments such as "my sister is five". In such a context
"five" indicates a property of "sister" and it has conceptual characteristics analogous to
the concepts of "tall" or "big" used in a adjectival way. The auditory responses of the
low achievers were strongly associated with such aspects, children talked freely about
"five books" or "five fingers"the concrete objects being the books or the fingersbut
did not direct attention at the core of the concept, either the counting process or the
numerical concept which was the noun.

Such interpretations would seem to indicate that, in a sense, the children's
understanding is on a plateau. The given property does not provide a cue to the
presentation of a property at a higher level of thought. Thinking which generates the
description is essentially "horizontal"it moves from one surface feature to the next and
so on. In the numerical sense it moves from one series of countable objects to the next,
for example, from books, to fingers.

Essentially such "horizontal thinking" was also experienced when children considered
the ball. Children who describe the colour of a ball, or who went to great lengths to
describe the visual characteristics of a football were also describing features not
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essential to the conceptual core.

Children who describe a ball as a spherical object, a round or ovoid object used in
games etc. did not focus on horizontal, frequently discrete, properties. They provided a
sense that their descriptive qualities could move in a vertical plain which they traversed
to provide notions of the core concept or representational features almost at will.

Looking at the Icons
Similar patterns of behaviour were identified with the iconic representations. Again,
though there are an indefinite number of conclusions that may be drawn from each
item, the low achievers focused extensively on visual and imaginative characteristics.
These were concrete, realistic and of a similar qualityin the sense that they were seen as
pictures that required colour, detail and a realistic content. High achievers concentrated

on the more abstract qualities.
Again we see notions of horizontal thinking arising when the children discussed the
imagery of `two quarters', `honeycomb' etc. They provided imaginary extensions which
were essentially the same in quality i. e. "window with curtains, window with shutters,
lift doors."

Amongst the high achievers their was evidence that item difficulty influenced their
vertical movement. The icon 'two quarters' provided evidence of such movement being
in a "top down" form. Initially it triggered 'higher level' mathematical interpretations
that gradually moved towards imaginative descriptionit was a "shape in four quarters,
half shaded....picture of a window", or "two out of four, half, cupboard, windows
where they don't use shutters". The more complex "honeycomb" presented evidence of
a different analysisa "bottom up" interpretation. Initially descriptive, each quality
seemed to provide cues for the next level of processing "Hexagons, symmetrical, four
light, four dark, one quarter and three quarters".

Looking at the Symbols
The special feature of mathematics is its symbolism. The qualitative evidence indicates
that children's interpretations of both linguistic and iconic stimuli have strong
similarities with their interpretations of mathematical symbolism. 'Association' and
`visual/description' again dominates low achievers responses and these are accompanied
by the need to concretise the symbols. This was achieved in two ways:

(i) by associating concrete items with the symbols, for example "Three can't be
divide by four because there would be a remainder. You can do it with apples
though", and,

(ii) allowing the symbols themselves to become the concrete items and then to
describe the lines and curves which were their external features. This happened
with several numbers to once again provide evidence of the horizontal thinking.

Amongst high achievers the abstract nature of the symbolism tended to draw upon
either a bottom up analysis or, depending on familiarity, a top down onevertical
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thinking. The "unfamiliar" 3 + 4 prompted responses of the former kind such as
"Fraction of some sort, not a whole number. Ah! Yes, three quarters". 3/4 promoted
both, "Three quarters, four pieces, 3 of one sort, one of another, three quarters, one
quarter, ratio 3:1....", "three quarters, point 75, 3 over four, three out of four,
equivalence, four squares, three shaded". This also shows that these children could
describe the notions without the need to concretise them.

High achievers seem to be consistent in using the mathematical symbol as a procept and
applying vertical processing characteristics in their elementary arithmetic. Similarly
low achievers remain consistent in their need for concrete referents (external or
internal) and horizontal thinking. For them:

The mathematical symbol appears to be quickly translated into a concrete item,
either as external referent or mental image.
This concrete item can be changed-fingers can become sticks etc. but the quality
of the item remains the same-a further example of horizontal processing.

Such transformation leads to counting processes repeated without reflection on the
input/output link which, we suggest, inhibits the abstraction of, for example, the
process of addition into the concept of sum.

CONCLUSION

The notion of action encapsulation lies at the heart of many contemporary theories of
cognitive development in mathematics. However, actions on objects possess
connotations that, we suggest, tra-ve strong implications for the quality of children's
imagery. Children with different understanding of the nouns, icons and symbols
associated with mathematitrate on different aspects of these to the point where
they may attempt to encapsulate different kinds of action. The mathematics of the low
achievers remains abstract', its symbols need concretising and its pictures focusing. By
not understanding the nature of the abstract nouns or the symbolic nature of icons and
numerical symbols we suggest they may not form the generalisations and relationships
that are the hallmarks of proceptual thinking.
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DESIGNING A DOMAIN FOR STOCHASTIC ABSTRACTION

Pave Pratt (Mathematics Education Research Centre, University of Warwick)
and Richard Noss (Institute of Education, University of London)

Abstract
We describe the development of a computer-based domain within which children can manipulate and
connect stochastic gadgets, representing everyday objects such as a dice, a coin, a lottery and a set of
playing cards. These gadgets co-exist with others which may be less obviously stochastic but which
are nevertheless drawn from the young child's everyday life. Observations of children interacting
within this domain are allowed to shape the next iteration of software development, enabling us to gain
a window onto the process by which the domain shapes the children's thinking about stochastic
events, and into the software design process itself.

Introduction
The domain of probability points particularly sharply to a fundamental difficulty in
mathematical pedagogy. On the one hand, it is deceptively close to everyday
intuitions and experience, even language: chance encounters, random behaviours,
likely occurrences. We could be forgiven for thinking that it is easy to build on these
culturally embedded meanings, and that these would facilitate the transition to a
mathematical way of thinking. Yet we know this is not the case; probability is a
notoriously difficult topic, and it is often said that the only way for students to
achieve satisfactory grades is to ignore altogether the relationship of probability to
everyday notions of chance.

The explanation seems clear enough. Mathematical discourse is simply different
from everyday discourse, and the mathematical notion of probability is a scientific,
rigorous concept in contrast to the fuzzy idea of chance which pervades everyday
settings. But this simple statement masks the complexity of finding a pedagogical
solution. In fact, we might argue that this complexity underpins a fundamental
challenge of mathematical pedagogy: to construct situations which are rich in
meanings for thd learner, yet which point towards the specifically mathematical
meanings which we would like them to acquire. As individuals make their way
around their social and physical world, the intellectual tools at their disposal for
mathematisation and abstraction are fairly impoverished. There is no need for them:
everyday, pragmatic activity is adequately served by the fuzzy linguistic tools and
artefacts that have emerged in the culture over millennia. Thinking mathematically
demands more: it presupposes that one has a more or less rich pool of intellectual
tools at one's disposal: algebraic notation, symbolism, and so on. These are precisely
the intellectual tools one has at hand if one is a mathematician, and precisely those
which one lacks if one has yet to be inducted into mathematical discourse.

This puts us in a kind of pedagogical loop: We would like people to gain access and
power over these tools in order so that they can make mathematical abstractions.
But, in order to make mathematical abstractions, it seems that they need access to
precisely these tools.

One solution to this problem, (Noss & Hoyles, in press) is to design new domains of
abstraction, where there are tools, symbolic resources, which help to make these
generalisations and abstractions. These may not be the same as mathematical ones,
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but neither are they the same as those we encounter in the street: they lie in a half-
world between the concrete and the abstract.

Let us give an example. Why do people believe that if there is a run of 6 reds in
roulette then the next spin will be likely to be black? There are good reasons. There
is a sort of representativeness criterion (Tversky & Kahneman, 1974): If one walks
into a party early, for example, and finds six women there, it is a good bet that the
seventh will be a man. Experience leads us to believe that parties often have
approximately the same number of men and women. So everyday reasoning leads to
the (mostly correct) conclusion for parties, but one which is false in general: and
false in the sense of roulette. Everyday settings are generally unhelpful in supporting
recognition of the limitations of the representativeness criterion.

Worse still, everyday life can be downright misleading: playing roulette, it doesn't
actually matter if one makes the false assumption: in reality I am as likely to win if I
put my money on black as red there is no penalty for my "wrong" action.
Everything conspires to make me believe that which isn't mathematically true.

Of course, we might simply provide advice to students which goes something like
this: "Ignore reality. Probability is just counter-intuitive. Always work with the
definitions and standard methods.... If a trial may result in any one of n exhaustive,
mutually exclusive and equally likely cases, and m of these are favourable to an
event A, then the probability that A will happen as the result of the trial is measured
by the quotient min." We can erect a coherent symbolic edifice which a few will
understand and most will not. We know that this lack of everyday meaning is
problematic, even for the few who are able to understand the formal structure. Even
identifying processes as stochastic is not straightforward: dice rolling, coin tossing,
the cutting of playing cards are seen by most people as stochastic in nature.
However, other contexts, often drawn from the social domain, are not seen as
dependent upon chance factors (Nisbett et al, 1983).

Let us give another example. In crossing the road, one tends not to think of safety as
a matter of chance. By taking fairly rudimentary precautions, the chances of a
successful crossing can be dramatically increased. The outcome is foremost in one's
mind in the sense that a single successful crossing is all that matters rather than
whether one acted out the optimal strategy, in stochastic terms (see Konold, 1989,
for discussion on the outcome approach). Nevertheless, a town planner, with data
about traffic accidents, may well do better to apply a stochastic model in making
decisions about the location of pedestrian crossings. The choice of perspective
appears to depend upon the extent to which one can exert control over the actual
outcome. Restated, our pedagogic challenge is to find ways of widening the domain
which is perceived by children as stochastic.

Our aims
We are trying to construct a setting in which individuals will meet the consequences
of their beliefs: Our aim is to build a domain of abstraction in which the laws of
probability matter, in which it is possible to work with these abstractions, rather
than to approach the abstract as a separate domain grafted on to activity: maybe not
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the totality of the laws of probability, maybe not even the correct laws, but at least
confronting the problem that there are laws of probability which are different from
walking into a party or crossing the road. We want to put individual learners in
situations where they can express their beliefs in symbolic (programming) form,
where they can articulate the beliefs that they hold, and they are constructing those
beliefs, and reconstruct them in the light of their experiences.

Method
We are developing a programming-based system), which will serve as a window

(Noss and Hoy les, in press), through which we can observe children's thinking-in-
change as they use the quasi-mathematical resources embedded in the domain and
forge new meanings within the web of connections which includes both the
structures in the domain of abstraction and the child's dynamically changing internal
structures (see Hoy les & Noss, in press, for an elaboration of the webbing

metaphor).

The notion of computer as window also applies to the process of designing the
system. We wish to capture our own insights on the webbing process, by allowing
our experiences of observing and interviewing the children to shape the development
of the 'software. As each new iteration of the software is used by children, we will
gain fresh insights into how these new tools influence their thinking, which will in
turn re-shape the software. This process of iterative design lies at the heart of our

methodology.
Our approach draws further inspiration from the notion that it should be easier to
analyse and make sense of the design process itself as it is acted out, rather than
simply examining the final product. Indeed we wish to blur the study of software
design and children's construction of meaning within stochastic situations, since we

see the resources available within the system and within the learner as co-existing in
a symbiotic relationship.

The Software Domain
We have chosen to implement our system in Boxer (diSessa, 1985), a computational
medium in which we can offer and revise resources to the learner through Boxer's
reconstructible interface. At the same time, Boxer's own structures encourage
learners to articulate their ideas through various modalities, including an extended

Logo-type programming language.

In this paper, we will concentrate on iteration 4. The previous iteration culminated
with the development of a set of "gadgets", quasi-stochastic computational mini-
systems or devices which can be used as stand-alone objects but which can also be
used as descriptors for other objects in the domain.

1 By system, we refer both to the software, and to the social and pedagogical settings we have

constructed.
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All the gadgets are activated by a mouse-
click and they display the result of that
action. The gadgets can be opened up to
reveal the basis of how they operate. So, for
example, the DICE gadget (see figure 1)
opens up to reveal:
choose-item

ri 2 3 5 6)
'Da ta,

The rest of the programming is hidden (in
Boxer's CLOSET, which is in fact
accessible to a more inquisitive or persistent
child) so that the learner is encouraged to
focus on the core mathematical elements of
the action, expressed both symbolically and
graphically.

The data can be modified; the child may
wish, for example, to introduce a new type
of dice, perhaps with bias. For example:

choose-item (1 2 3 3 4 4 4 5 5 5 6 6 7 8 8)
Dom

Fig 1: The iteration 3 gadgets

The clicking of the dice can also be implemented at command level: click dice will
have exactly the same effect as clicking on DICE with the mouse.

Similarly, ROLL-A-PENNY (see figure 2) is, in one
sense, just another gadget, whose operation mirrors
that of the other gadgets. The Roll-A-Penny board
opens up to reveal by default: click always. In this
setting, pennies always roll to the same place on the
board, but, as with the other gadgets, the operation of
the Roll-A-Penny gadget could be changed arbitrarily
to, say, click dice or indeed
choose-item

.The Roll-A-Penny gadget can
then be operated either through direct clicking or with
the command: click roll -a -penny.

Iteration 4 - The case of Gail and Jane
The case of Gail and Jane serves to highlight the issues
which are beginning to shape our thinking about
iteration 4. The two girls, age 10, have been involved
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in the Primary Laptop Project2, where children have immediate and continuous
access to portable computers. As a result, they have considerable experience of using
computers, including many hours of using LogoWriter. However, their prior use of
Boxer was limited to two sessions, of about 2 hours each3. Neither would be
regarded by their teacher as "exceptional" in mathematics. Jane, who has been
involved in the laptop project for a longer period of time, is more confident on the
computer and held control of the mouse for most of the research sessions. Gail is
more confident mathematically and led the discussion.

We will focus on one two-hour session in which Gail and Jane interacted with the
system and responded to questions from the researcher. The session was video-taped.
The discussions below are extracted from the transcript.

At the outset, the two girls were encouraged to play with the gadgets. Gail and Jane
soon linked those gadgets which depended upon choose-item (i.e. DICE,
LOTTERY, CARDS, and COIN). However, they seemed to demonstrate a different
perspective when exploring some of the other gadgets. The following extract begins

with.Gail and Jane exploring the HOOPLA gadget, which is intended to simulate the
fairground game in which the player tries to throw a hoop over a peg. It was clear
that they expected to be able to control in some way where the hoop landed. The left
hand column contains the researcher's uuestions or oromots.

G : Why doesn't it go to the places
that you point at?

That's what you feel should happen, is it? J & G : Yes.
Do you feel the dice ... the number that the dice comes up with
should be anything to do with how you click the dice?

G : The dice?

Mmm - when you click the dice, do you expect ... do you
expect the number that comes up on the dice to be anything to
do with how you click the mouse?

G : It won't really but it could be.

You wouldn't expect that, though? G : No.
OK. What about the wheel? Would you expect the number that
comes up on the wheel to be anything to do with how you click
the mice?

G : Well, the mouse? It might
depend on what you.mean ....
actually clicking the mouse or
placing the mouse?

Yes, I'm including placing the mouse as part of .... G : Yes, it does, I think.
On the wheel, you think it does. What about you Jane? Do you
think ...do you think where the .... what comes up on the
wheel, what number comes up, should depend on how or
where you click the mouse?

J : Not really.

So you don't, but Gail does. Why do you think it should, Gall? G : Well cos everytime I clicked
there it always came there.

Did it? Do you want to try again?

2 The Primary Laptop Project is studying the effects on young children's mathematical learning
when they have continuous and immediate access to portable computers. The computers are seen as
part of a complex working environment, where many aspects integrate to support the children's
learning. The project has just completed its third phase in which children of ages ranging from 8 to 12

took part over a period of one academic year. See, for example, Pratt (1995).

3 The programming element of Boxer is sufficiently similar to that of Logo for this not to be too

problematic.
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Gail tries to click on the wheel but the spinner shows a different place.
1 G : Oh, it did before.

After a few more clicks...
What do you think now? I G : I don't know - it might not.

There were similar episodes concerning the HOOPLA and the DONKEY-TAIL
gadget; in each case the children had expected to be able to control the outcome by
how they clicked the mouse but further careful experimentation showed that this did
not seem to be the case. This passage shows how the girls began with a perspective in
which the WHEEL, HOOPLA and DONKEY-TAIL
gadgets should be controllable (and were quite
different from the DICE, LOTTERY, CARDS and
COIN gadgets). But experience proved otherwise;
however they experimented, they were unable to
make the gadgets respond causally to any action.

Later in the session, the researcher introduced the
ROLL-A-PENNY gadget. After some initial
exploration, Gail and Jane were challenged to make
the ROLL-A-PENNY gadget work as realistically as
possible. That is, to simulate the rolls of a real
penny. In a previous session, the girls had played
with a real roll-a-penny device and observed how
the distances that a coin rolled varied slightly even
when they tried to keep all the possible controlling
factors the same. They had also discussed how most
coins seemed to roll roughly the same distance
although they noticed that a few went further and a
few fell short.
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Fig. 3: A roughly even distribution
after 40 rolls

The children began by modifying the DICE data
box, first to include just 4 and 5 and later adding 3 and 6. After 40 rolls, the
children used the HISTORY button to obtain a picture which showed a roughly equal
number of each score (see figure 3).

What do you feel about that, Jane? Does that
surprise you?

J : A little bit.

A little bit. In what way? J : ...1 didn't think they'd be so evenly spread.
G : ..six is quite hard because that's the highest
number; they are all quite hard to get because ...

Are any of them easier to get than the others,
do you think?

G : No.

Are any of them harder to get than the others? G : Not really....Well, you don't really know what
it's going to do; it's just like a game....you can't
really make it that realistic because, I mean .... the
dice, it makes it just lucky but when you do it like on
this (referring to the real roll-a-penny device), it's
sort of like more realistic because there's nothing like
a dice or anything.
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Right, but when you do the roll-a-penny, do
you know before-hand exactly where it is
going to go?

G : Not exactly but you've got a rough idea
Gail and Jane carry out some more rolls.
G : Well, on the real thing there was...there was a
few going on 6...there were a few going on
some...but there was like one part that had all loads
of them.

After a few more rolls
How do you feel that this compares to the
picture that we've had recently on the
computer? What's different about this picture
and the one that's on the computer?

G : Well, because we wanted the computer to look
more realistic, if we put too many numbers on it
could have went anywhere, but if we do this, it's, I
don't know, it's on its own, we can't control
it We might be able to control that if we only
put one number and then they'd all be on the same
number but that would be a bit stupid.

Yes, and that would lose the realism of them
going different distances.

G : Yes, and if we like put a six and a five, like,
they'd all be on the same ...

The researcher encouraged the girls to think about a real dice and its six faces.
So, you've got these six faces on the dice.
What could you do to them to try and make it
more like what you're doing here?

G : You could put like more of the number on one,
so, like you could take the 2 off and put 6 on it
instead, and you could take the 3 away and put a 5
on.
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Fig. 4: Joy's and Gemma's results

They then began to change the dice on
the computer. Initially, they made the
data box for the dice gadget into
4,5,6,4,5,6,7,8,3. After several more
changes, they reached a point where
they had four of each of 4, 5 and 6,
one 7 and one 3. When they rolled the
penny lots of times, they obtained a
picture with many more 4's, 5's and
6's and rather less 3's and 7's.

Jane and Gail explained that there were
so few 7's and 3's because they had
only one of each whereas they had
four of the 5's, 6's and 7's. They felt
that this picture was much closer to the
real results that they had previously
obtained. Finally the researcher asked
Gail and Jane about the issue of '
causality.

How do you feel now about the G : Well it's a bit easier to control on the computer ...if you go
extent to which you can control the hack onto the dice thingy, you know on the back of it, it will
real world penny compared to what
we are doing on the computer?

tell you what the numbers are and you can take them from it,
say like, if you wanted them all to he 6's, you can just write 6
on it and it will always come out with a 6.

Right, so that's a sort of control,
isn't it? And what control do you
have on the real roll-a-penny?

1 : None, unless you push it or something.
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Conclusions

Gail and Jane came to this domain expecting that they would be able to control
certain gadgets and not others. They were not surprised that gadgets like the dice
behaved stochastically. They knew from their everyday lives that such devices were
unpredictable, and uncontrollable, and this seemed to be a major criteria by which
they judged whether a situation was stochastic.

However, they expected to be able to control gadgets such as the WHEEL, HOOPLA
and ROLL-A-PENNY. Their everyday experiences suggested that there were factors
in their control: such as how hard they threw the hoop, which affected the distance
travelled, and they were surprised when they found that in this domain they could
not exert control through the mouse. When they had played with the real roll-a-
penny device, the coins had rolled varying distances but they explained this variation
in terms of causal factors, how they had 'rolled the coins or the slope down which the
coins were rolling.

In seeking to make the computer's gadget more realistic, the girls looked to
introduce variation. They did this by linking the DICE gadget with the ROLL-A-
PENNY gadget. Initially they found that there was too little control over where the
coins landed when compared to the real device, so they narrowed down the options
from which the dice was choosing. Recognising that in this domain they could easily
introduce bias was a major breakthrough as they were now in a position to focus on
and control the distances travelled by the coins. Indeed, at the end, Gail seemed to
feel that the computer was easier to control than the real device, contrary to her
original stance.

We are left with an emergent principle for the design of further iterations. We are
convinced that a key facet of our design lies in the expressability of chance: that is,
we have opened up the possibility for learners to express that which is not causal.
One mechanism, which we have seen in the briefly reported data above, was the
expression of unfamiliar stochastic processes (such as ROLL-A-PENNY) in terms of
more familiar ones (such as DICE). At the same time, we have begun to encourage
learners to focus on the biggest paradox of all: how to express - within the domain
of abstraction - the structure of an aggregated set of trials, when it is impossible to
predict the outcome of a single event.
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CORD'S STORY: AN AFRICAN AMERICAN STUDENT POINTS TO THE
NEED FOR CHANCE IN COLLEGE MATHEMATICS PEDAGOGY

Nonna C. Presmeg

The Florida State University

This case study of one African American student enrolled at a large State
university in the USA, provides a powerful rationale for the need on such
campuses to change the way mathematics has traditionally been taught
using lecture pedagogy and large classes. At the time of this research, Cord
was a prospective secondary school mathematics teacher, who had been
deeply committed to his chosen vocation but was considering changing his
career and chosen major subject because of the serious difficulties he was
experiencing in university mathematics courses. Cord's story, which he told
with passion, illustrates the importance of affective factors, race
consciousness, and the pivotal place of positive and negative role models, in
mathematical career decisions.

In her report on the demographics of access and equity in United States

higher education, Bennett (1995) wrote, "Although African Americans have

dramatically improved their high school completion rates, their college participation

rates have declined, particularly among males" (p. 664). In the 18-24 year old age

cohort, the percentage of African American males in college declined from 35.4 %

in 1976 to 29.7% in 1992. Since the 1960s there has been a dramatic increase in the

numbers of Black students attending predominantly White colleges and universities

(ibid.). The attrition rates of Black students on such campuses are 5 to 8 times

higher than the attrition rates of White students on the same campuses (p. 669). Yet

the need for positive African American role models and mentors, particularly in

mathematics classrooms at all levels, is as acute as ever (Banks & Banks, 1995;

Mathematical Sciences Education Board, 1990). In this report of a case study of an

African American male prospective teacher, Cord (pseudonym) manifested "race

consciousness" in the sense of Hall and Allen (1989). Cord had a dream (Martin

Luther King, Jr.) of "making a difference" in the lives of the African American high
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school students to whom he aspired to teach mathematics. At the time of the

research, Cord was in danger of dropping out of the mathematics education

program. His story dramatically illustrates some of the factors crucial in minority

retention, and points to the need for change in traditional university mathematics

pedagogy.

The case study of Cord is one of four case studies which were carried out in

Summer, 1991. The writer was asked by the Center for the Study of Teaching and

Learning to find out why many of the African American prospective teachers were

experiencing difficulty in content mathematics courses. The theoretical foundation

and reasons for choosing the research methodology of qualitative case studies in the

investigation are expressed in Merriam (1988), for whom "A qualitative case study

is an intensive, holistic description and analysis of a single instance, phenomenon, or

social unit" (p. 21). The particularistic nature of this research methodology, with its

inductive focus on "process, understanding, and interpretation", is eminently suited

to the research question.

Four semi-structured interviews were conducted with each student over an

eight week period. Three of the four students (including Cord) had completed one or

more mathematics education courses taught by the author, whom they knew and

trusted. Thus empathy was established quickly, and all of the students appeared to

see value in the study, from which they hoped the insights attained might help their

successors, even if the project was too late to spare them some hard experiences.

Relevant themes of the four interviews with Cord, and their duration, are

summarized as follows.

Theme Duration in minutes

1. How the problem appeared to the student (and home and 30
educational background).
2. Specific examples 'worked aloud' from textbooks used 20
in the student's university mathematics courses.
3. Six 'word problems' from a cognitive preference measure 20
(Presmeg's 1985 Mathematical Visuality instrument).
4. Beliefs - 'What is mathematics?' and final themes. 30
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Cord's story

Although it is artificial to separate influences which interweave in their impact
on the student's psychological functioning (Berry & Asamen, 1989), for
convenience of reporting, emergent themes will be grouped around the home, the
school, and the university mathematics courses.

A. The home.

The literature concurs in stressing the importance of a supportive home

environment for academic success of minority students, irrespective of socio-

economic status, female-headed households or other factors (Jenkins, 1989;

Lomotey, 1990; Mathematical Sciences Education Board, 1990). Learning and

academic achievement were valued in the two-parent middle-class home from which

Cord came.

B. The school.

There were two overriding themes in Cord's description of his schooling.

Firstly, there was the part played by role models in his decision to become a teacher.

Secondly, this decision was influenced by experiences, both positive and negative,

from the classroom. These incidents, which he had experienced or witnessed,

sometimes seemed trivial in themselves, but their impact on his life was far

reaching.

Although Cord came from a middle-class home, the predominantly African

American elementary school he attended (a 45-minute walk from home) was in "a

poor kind of neighborhood" in a large city. The junior high school he attended was

"all Black", and at that time he had decided he wanted to teach business education.

But in the predominantly Hispanic and White senior high he attended, there was a

[White] teacher, Mrs M., of whom he said, "She is the one that really inspired me in

mathematics." Along with a detailed description of how she taught particular

mathematical topics, he remembered, "She would always make it so much fun to

leant all of these kind of little acronyms there." For his five senior high mathematics

courses, Cord's symbols were a B, two As and two Cs. Partly as a result of Mrs

M.'s teaching, he decided to become a mathematics teacher. However, there was
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also an incident in the class of a different teacher, which resulted in a negative role

model effect, which also influenced his decision.

Cord: "My elementary experience was very bad, and that's why I decided to
become a teacher. I had some good teachers, and a lot of 'em were not! It
was a negative thing that happened [in fifth gradef that inspired me to become
a teacher. One of my friends had asked the teacher to explain the lesson
because he did not understand where she was going or how she was
explaining it. And she said, 'You know, I've explained it one time and I'm
not going to explain it again, whether you all learn or not! You have to
realize, I wanna get my paycheck!' And, er, when she made that comment, I
thought, you know, to myself, from that day on I just, you know, I was like,
God, I wanna be a teacher, I wanna be a good teacher! So, y'know, from that
day I wanted to be a teacher."

Cord's passionate description was characteristic also of the way that he described

his university mathematics experiences.

C. University mathematics courses.

In school, as Cord reported, "I took tests and everything and they found that I

was very exceptional in mathematics." Yet in the university mathematics courses he

had taken, his symbols were as follows:

Trigonometry D, A- (course repeated)
Precalculus C
Calculus 1 F, D (course repeated)
College Geometry F.

He was repeating Calculus yet again, and would repeat Geometry.

Cord: "Well, right now, I'm just debating my major. I'm debating whether I want
to teach any more or go to another field" [He was considering another service
field, namely, public administration.]

Interviewer: "Why? Because of the math?"
Cord: "Yeah! It's just because I still have to take Linear Algebra, and, um,

Statistics, and what's the other one? And Calc. 2. So I'm like, y'know, I
dunno if I wanna go through that."

Interviewer: "All this heavy math in order to be a high school teacher."
Cord: "Exactly! That's where the problem comes in. I don't see the relevance for a

lot of the math, but, y'know, I see it as, this department has been here for a
long time, they're professionals, so apparently there's some relevancy to all
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this that I can't see tiecanse I'm not in the classroom. So that's how I think
about it.7

When questioned, Cord explained that he had taken some content mathematics

courses concurrently with mathematics education courses which were taught

according to a constructivist paradigm. He found a large discrepancy in the teaching

methods employed. He spoke as follows:

Cord: "We sat there for two and a half hours, no, two hours [in College Geometry],
listening to him lecture. It killed us! And when you take classes together, like
doing, when I was doing College Geometry I was taking [the constructivist]
course, Introduction to Applications for Mathematics Teachers, so it would
be like, we came from [the constructivist] course, where we interacted and
we just had fun, and we could apply our learning, and then we'd go to this
course where we sit there for two hours and listen to this man lecture. And,
.y'know, we had to go through that all the time we were in [the constructivist]
class, and it was just terrible! It was just, made me miserable!"

Cord could not see why the course, College Geometry, was required if the students

were also required to take the education course, Teaching Algebra and Geometry in

the High School, which was.another constructivist course. He said, "Y'know, so to

me that is two courses that are knocking each other." He continued as follows:

Cord: "I didn't see any relevance for College Geometry. And, with talking with
people in the Department, you know, math education students even, nobody
could remember. I, when I was in the course I tried to get help, and the
people that took it before couldn't remember what it was about. Because, you
take it and you get a grade, and you just do it!"

Interviewer: "So it's for the sake of the grade?"
Cord: "Yeah! Just because it's required."

Aspects of content mathematics courses which caused difficulty may be summarized

as follows:

fast pace of mathematics courses;
large classes which made learning impersonal;
quantity of content matter;
students' excessive workload.

In the second interview, College Mathematics, students selected examples

from acollege textbook appropriate to a content mathematics course they had

completed, and worked out these-mathematical tasks, explaining aloud how they
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were thinking, what they could remember, what their impressions and feelings were.

All of these students appeared to recognize the material as they paged through the

books, but when they came to do examples, in detail, it was apparent, firstly, that

the mathematics had been learned in a very instrumental (Skemp, 1976) or

procedural way, without real understanding of the concepts (Hiebert, 1986) or of

why certain procedures worked. Secondly, it was apparent that much even of this

procedural learning had been forgotten. What remained was the affect or emotion

which they associated with the experience of having done the course. In particular,

Cord attempted five problems from a Calculus textbook, involving slope formula,

implicit differentiation, a second derivative, and the quotient rule. The impression he

gave in this interview was that his learning of calculus was somewhat instrumental,

but that he felt confident, and was keen to show what he could do. He was currently

enrolled in the course for the third time, and liked the way his current instructor

taught the course, using diagrams. Some concepts were still confused; for instance

he took the second and implicit derivatives as being the same thing. But in his self-

confidence and increased enjoyment of the course, he gave the impression that he

was coping and that he felt he would be successful that time.

Cord made strong comments regarding the negative effects of a restrictive

mathematics syllabus, particularly at university level. "A lot of teachers in the math

department just follow syllabus. See, I hate syllabus! I hate syllabus with passion!

Because syllabus confines you, to so much. And it limits, you know, what the class

can do. So, in all the classes that I've had before, we had a syllabus and it limits

you. Like, the teacher will say, 'Well, we gotta get past this, you know, we gotta get

to this point, we gotta keep going'."

The passion Cord referred to in his comments was typical of the articulations

of all the students in this study, at times. The impression given was of the overriding

importance of affective issues in the students' learning of mathematics at all levels,

but particularly in higher education. When students learn university mathematics

instrumentally, just for the grade, and then forget the course contents after the final

examination, it is not just that they might as well not have taken the course. It is
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worse than that, because the negative affect which they associate with the

experience of having taken the course, 'successfully' or otherwise, remains after the

course contents are forgotten. "God, I hated all of this stuff?" said another of the

students in the study, as she paged through a College Algebra textbook the contents

of which she had largely forgotten.

The interview on mathematical visuality will be omitted in reporting for this

paper, because the cognitive style measure of mathematical visuality, while

interesting in itself, was not found to be germane to the themes which emerged in

the other interviews, nor to the fact that Cord was Afiican American. The

mathematical visuality of the four students interviewed corresponded roughly to

variations that could be expected in the general population.

In the fourth interview, the students were asked about their beliefs about

mathematics, by means of the question, 'What is mathematics?' Cord had given this

question much thought and had previously written an essay which addressed the

subject. He saw mathematics as relevant to all of life, and to every other subject of

the school curriculum:

Cord: "1 think of mathematics as the infinite subject; it is the subject that governs all
other subjects. And when I say govern, I mean, the world cannot revolve or,
the world cannot exist, without mathematics."

With understanding and eloquence, he proceeded to give examples. With regard to

how he hoped to teach mathematics, understanding was an essential ingredient. He

commented further:

Cord: "I don't see myself as a teacher. I see myself as an educator. You can't teach
anyone, you can only educate them. ... That while the students are learning
from me, I'm also learning from them. And we can, you know, learn from
each other. I see myself, when we're doing small groups and things, me
getting into small groups, actually participating, helping, you know, exploring,
and showing my students that 1, too, learn new things everyday. Because a lot
of times, students get a teacher and he'll know it all, the person with all of the
knowledge, and they forget that they, too, can make knowledge and they just
don't know how to, express it or unleash it."

It is ironic that what he aspires to in his own teaching, is in many ways a reaction to

what he experienced in his university mathematics courses.
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ON DIALECTICAL RELATIONSHIPS BETWEEN SIGNS AND ALGEBRAIC IDEAS'

Luis Radford
Universite Laurentienne

Ontario, Canada

Monique Grenier
Conseil de ('education de Sudbury

Ontario, Canada

The goal of this paper is to provide some preliminary elements for a discussion about the
relationships between signs and algebraic ideas. In order to do so, in section 1, we discuss
some semiotic and philosophical ideas about signs and symbols. The ideas drawn in
section 1 give us a new perspective to understand some elements of the epistemological
dialectic between signs and algebraic ideas (section 2). In section 3, we present some data
obtained from a teaching sequence, shaped by our epistemological analysis, whose aim
was to help students to evolve towards abstract symbols-ideas levels.

1. Signs, Icons and Symbols

While it seems that there is a general consensus considering symbols as a driving force of

algebraic thinking, it is much less obvious to say how symbols can be used to promote algebraic

ideas. Of course, we may say that algebraic ideas are actually promoted when students

manipulate symbols like x, y, z. However, as a closer look at the problem shows, the modern

scientific culture on which such a belief may be founded cannot suffice to sustain the thesis that

algebraic ideas are automatically lagged behind symbols. Thus, in order to approach the

question of how can symbols be used to promote ideas, we first need to examine, to some

extent, what a symbol is.

Symbol is not seen as synonymous with sign. Let us start with the latter. What is a sign? Many

linguists agree in saying that a sign is something used everyday to communicate and to signify.

However, the functional slants of signs do not characterize them. Mediaeval scholars used to say

that a sign is something which is placed instead of something else (aliquid gat pro aliquo).

Following this tradition, C. S. Peirce who determinately influenced the semiotic research of the

20th century defined, at the end of the last century, a sign as "something which stands to

somebody for something in some respect or capacity" (Buehler, 1955, p. 99).

According to Peirce, a sign captures only an aspect of its object, this aspect is the ground of the

sign, that is, a component of the signified (signifie ) associated to the object (see Eco, 1985, pp.

34-35)..On the other hand, a sign may refer to another sign by virtue of a certain abstraction. A

sign, Peirce says, "creates in the mind of the person an equivalent sign, or perhaps a more

developed sign" (op. cit. p. 99) and he calls this last sign the interpretant of the first sign. The

interpretant is a new sign (see fig. 1) containing a richer cognitive content (Eco, 1988, pp. 153-

54).

Peirce divided the signs into three categories that have been adopted by modem semiotics and

are nowadays, as Eco notes (1992, p. 11), of universal usage. The three categories are: Index,

'This article is part of a research program supported by a grant from FCAR No. 95ER0716
(Quebec) and the Research Funds of Laurentian University (Ontario).
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Icons and Symbols. For our purposes, we only need to consider the last two. According to

Peirce, "an Icon is a sign which refers to the object that it denotes merely by virtue of characters

of its own, and which it possesses, just the same, whether any such object actually exists or not"

(Buehler, 1955, p.102). The Icon reflects, then, some 'resemblance' (physically or other) with

its object. In contrast, the Symbol is considered by Peirce as an arbitrary sign related to its

object by virtue of a law or convention.

From an educational point of

view, we are interested in

elucidating the signifying Abstraction ProcessIP-
function of symbols -a problem objectobject sign hew sign or
related to the question that drives (previous into rprecantPeirce's first triadic sign

our research and that we raised relation of a sign

recurrent semiotic relationship between signs

ground of the
interpretant

before, that is, how symbols can

promote ideas. In particular, we

are interested in the following set of questions which we will call Question (a):

(at)Let si be a sign of content or ground gi that evolves into another sign s2 of a
richer content g2. Is the produced change caused by a modification of the first
sign or by a modification of the first content? Let 9 be the starting term (thus,

elsygi)).
(a2) How does the changing process take place? More specifically:

(a21) (external agent) What is it that makes 9 change?
(an) (internal dynamic) How do the different components spgi,s2,g2 interact

between themselves during the changing process?

The answer to this question depends on the content related to the ground and on some cultural

aspects in which the signifying act takes place. The answers will also depend on what we can

call the 'subject's experiential field' related to the object or concept (a field that recovers the

encounters and experiences between the subject and the concept). Here, we do not need to

consider this question in all of its generality; we shall circumscribe it to the case of algebra. In

order to pursue our investigation let us turn our attention to the philosophical perspective about

signs (something that, in contrast to semioticians, they call symbols). Even though many

philosophers may agree in considering that a symbol is something placed instead of something

else, as the mediaeval tradition did, the role that they give to symbols is that of accomplishing a

kind of privileged transcendental 'contact' with the idea (or the object, to use the Peircean

term) that the symbol is trying to catch (see Durand, 1964). The 'power' of symbols is

precisely to allow us to make definable the undefinable, to express beyond words that which is

essentially inexpressible and to «translate», beyond perceptible forms, that which is absolutely

«undefinable. (Juszezak, 1985, p. 8). The symbol becomes the epiphany (that is, the
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apparition) of the unfigurable object. In the case of emerging concepts, the process of

symbolization becomes an intellectually difficult adventure. In fact, how does one cull2 or

name the object that does not yet have an intelligible forma?

To sum up our discussion, Peirce's approach to the concept of sign allowed us to raise the

Question (a) that we consider relevant to teaching. The philosophical approach to the problem

of symbolization sketched above makes it possible to go a step further by providing a different

perspective to see the nature of the links between a sign and its object (or idea). The

philosophical approach may not satisfactorily answer our questions insofar as it may persist in

considering the object as an external object with a somewhat independent life from the

cognizer. However, both approaches provide us a starting point to consider our question (a)

from an educational perspective.

2. Some Epistemological Elements of Algebraic Signs: Naming the Un-nameable

In this section, we want to examine briefly some elements of the epistemological dialectic

between signs and algebraic ideas, focusing our attention on the concept of unknown. In order

to do so, let us remember that Babylonian scribes developed problems about geometrical

figures (squares, rectangles and so on); in many of these problems, the unknown was referred to

by its material name: e. g. a width, a length. No specific name was then created to designate the

emerging concept. Furthermore, according to Hoyrup's recent historical reconstruction

(Hoyrup, 1990), problem-solving procedures for many problems were guided by figures

representing the problem (e.g. squares, rectangles) from which some parts were cut and then

transferred and pasted to other sides of the figure, while other figures were added, when

necessary, in order to reach a final square. The point that we need to stress is that the algebraic

thinking underlying the solution of such problems was essentially iconic.

In contrast, Western mediaeval mathematicians used the latin word res and later the italian word

cosa (the thing) to represent the concept of unknown. Thus, there was a specific name for the

concept of unknown that applied to a great variety of problems. Even though the word res was

taken, for a time, as synonymous with radice (root) -which has an obvious geometric sense- res

and thing later acquired a contextual autonomy, thus becoming a symbol (in Peirce's sense).

2 It is worthwhile to note that one of the meanings of the verb /to call/ is "to demand or ask for
the presence of,.. Another one, even more suggestive, is "to invoke solemnly". To call, then,
allows one to make something appear, to become intelligible to our intellect. In this context, the
transcendental contact with the unattainable thing will be ensured by the symbol.
3Semioticians did not miss this point. For instance, in a recent book, Eco says:
.. one cannot have at one's disposal the appropriate expression until one has differentiated the

content system to an appropriate degree. It is a paradoxat situation whereby the expression must
be established on the basis of a non-existant content model before it can be expressed in some
manner. The producer of the signs has a very clear idea of what he would like to say, but does not
know how to say it..." (Eco, 1992, p. 30)
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Because of the fact that the name of the concept of unknown was no longer sufficient to

explain itself (in contrast to the case of icons that are self-sufficient), we find, in the 14th

century, the virtuoso Maestro A. de Mazzinghi explaining the thing as "an occult or hidden

quantity" -that is, a quantity whose identity will be discovered through the problem-solving

process.

It is extremely difficult to retrace the conceptual movement of signs and their corresponding

grounds. However, according to our research, we can suggest that the conceptual movement

leading to the symbol /thing/ in the 14th century was strongly supported by an enlargement of

the type of problems to solve. The square and its root did not apply to extra-geometric

problems. Thus, one could be lead to extend the geometrical ideas (based on the measure of

segments and surfaces) and to start considering them in a unifying numerical perspective which

lead to new ideas and signs. In terms of our Question (a), the enlargement of the type of

problems would play the role of an external releasing agent of the change process. The root -an

iconic sign- was absorbed by an existing symbol -the thing- and this process was accompanied

by an absorption and restructuration of ideas (see a22).

Res and thing (as well as the Arabian word shay' for the concept of unknown) were a catalyst in

the development of algebraic symbols. We find, in the 15th and 16th centuries, different

mathematicians engaged in the search of shorter symbolic representations -a search mainly

promoted by the need to find an easier way to carry out calculations which had become very

encumbering when problems became more complex. One of these attempts was made by Piero

della Francesca (fl. 1450); however, because of its geometric connotation, his sign system does

not reach the point of independence between content and expression. Della Francesca's system

can only be seen as an iconic one (see figure 2)4. In contrast, Michael Saki (1544) developed a

symbolic system. However, his system had the inconvenience of making it impossible to

represent the operational links between the unknown and its powers (e. g. the square of the

unknown is represented by a completely independent sign from the unknown, see figure 2).

Attempts were also made by other mathematicians

(e.g. Bombelli). The system that rurally prevailed

was the.one introduced by Vii te and reverted to

and improved by Descartes. As Cajori (1919) says

Descartes' choice was arbitrary. And following

Peirce, it is the condition for a system to be called symbolic. With the advent of the socially

accepted Descartian symbolic system, signs moved into another status: symbols became genuine

Some indent systems to write 1, x, x2, r3, 54, x5

etDelia Francesca r, z, TT
Stifel: t. t sae t tact. qt. ft.
Bombelli: ... -3 4

Fig. 2

41t is very interesting to note that della Francesca's efforts to construct a shorter symbolic system
lead him to an iconic one, which can be seen as taking a step backwards. This failure may be seen
as a symptom of the difficulties that one encounters when one tries to reach more abstract levels
of thinking.
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mathematical objects. The rupture with the mediaeval tradition can be seen through the fact that

before algebra reached its symbolic new realm, it was not possible to pose problems using

symbols only. Problems were posed in verbal form; signs were then used to translate and solve

them. The recognition of the status of mathematical objects for symbols made it possible to

pose problems within the symbolic system. As we can expect, the rupture with the symbolic

mediaeval tradition of res and thing raised new problems. Indeed, the ground of a sign was no

longer an idea (in its trivial sense) but a symbol. The recurrent chain of signs dealt with

symbolic interpretants. As a consequence, a different way of mathematical thinking was

developed a symbolic algebraic thinking.

3. From Iconic to Symbolic Algebraic Thinking: An Example

We are now going to present some experimental results of a teaching sequence for the

introduction of algebra. The introduction of algebra has been studied intensively over the last

years (see e.g. Rocha Fa lea°, 1995; Anarello et al., 1994; Bednarz and Janvier, 1994; Filloy

and Rojano, 1989, Herscovics and Kieran, 1980). There are even some commercially registered

manipulatives (e.g. Hands-on Equations® and Alge- Tilestm). A difference between the

previous approaches and ours is to be found in the historico-epistemological basis underlying

our teaching sequence. This basis allowed us to formulate our objective and to structure the

sequence as follows. We wanted to help students to evolve from concrete to abstract symbols-

ideas levels through a problem-solving process based on two main basic historical algebraic

principles underlying the transformation of equations: (a) a conservationequality principle

that allows one to carry out calculations with the constant known terms; this principle also

allows one to increase or decrease, in the same proportion, both members of an equation

therefore, to find an equivalent equation, 'proportional' to the preceeding equation (see

Radford, 1995a, pp. 79-80) and (b) a restoration principle (something historically called the

rule of al-gabr, related to subtractive operations) allowing one to restore or fix an

'uncompleted' or 'broken' expression (see Radford, 1995b, pp. 31-32).

We carried out a three-step teaching sequence in which students had to solve some word-

problems using (I) manipulatives, (it) icons and WO symbols.

Our teaching sequence (that was video-taped) was first experienced with 6 students ,14 -16 year

old, from a resource center for students having difficulties and later with a regular class of

Grade 9 students in a secondary school in Ontario. Working in cooperative groups of 3, they

were asked to answer some word-problems classified into 6 categories. Here, we report some

results from only two of them. One such category was the 'hockey card problems' (a category

that can be ackwardly modelled by equations of the type aix + o2x = a3.1+ a4 (a; eN.)(see

problem 1) and which was preceeded by another category of problems (bag-problems) related

to equations of the type alit+ 02 = 03 (a; Q.). The other category that we shall consider here
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was the pizza- problems -a category related to equations of the type
ak-'2)+°3'°4(x-`75)+°6 (aiN) (see problem 2).

Problem 1-
I have 3 envelopes each containing the same number of hockey cards plus 4 extra loose cards. I give Jacques
2 envelopes plus I extra card and I give Paul I envelope plus 3 extra cards. If I gave Jacques and Paul the
same number of hockey cards, how many hockey cards are there in one envelope?

Problem 2.
Andre must purchase the same number of pizza slices as Louise. When they arrive at the pizzeria, they realize
that the pizzas are all missing 2 slices. Andre buys 3 incomplete pizzas while Louise buys I incomplete pizza
plus 4 extra slices.How many slices does one complete pizza have?

we designed according to the problems. For instance, for the

In step (i), the students were provided with concrete material that

an

pizza-problems, we gave each group of students a kit containing A pizza with two missing slices

cardboard pizzas as shown in fig. 3. figure 3

Before solving the problems, the students were familiarized with principle (a) which acquired a

concrete meaning in terms of the two-plates balance that stand for the equality of expressions.

Principle (b) was not directly taught. In step (ii) students no longer had, at their disposal, the

manipulatives; they were asked to make the designs to solve the problems. The designs
correspond to (perceptual) icons (see fig. 4).

The students solved, without difficulties, the problems of steps (i) and (ii). During the problem-

solving process, they referred their actions to the algebraic rules (a) and (b).

11)+4
-u.

1)11
2 --gc--

IP f
figuse 5 figure 6figure 4 (problem 2)

Some objects of many problems in step (ii) were chosen in such a way that they were too long

to design (e.g. 21 hockey cards). Thus, instead of drawing the objects, we asked the students to

use numbers and letters. Spontaneously they used the first letter of the word. Thus, for example,

pizzas were represented by the letter p, while envelopes were represented by e. Their choices

coincide with a pattern mentioned by Ard 1989, p. 257:

"Many. if not most, symbols were originally. suggestive of a letter or sound. It is not
accidental that f is the most common symbol for a function and v is the most common
symbol for a vector".

In terms of the resolution of problems, the passage from step (it) to (iii) was succesfully done.

Of the group of 6 students, all, except one (to whom we shall return later, fig. 7), were able to

deal with problems placed in the 'other side' of the «didactic cuts (Filloy and Rojano, 1989).

1D2
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From (ii) to (iii), students kept using the algebraic problem-solving procedures (based on rules

a and b) that they developed cooperatively in steps (i) and (ii).

Concerning the dialectic between signs and ideas, something interesting to note in step (iii) is

the trace of (perceptual) iconic algebraic thinking on symbolic algebraic thinking. According

to principles (a) and (b), to solve pizza-problems, the students eliminated known and unknown

similar terms and completed the remaining uncompleted pizzas. In (iii), as it can be seen in fig.

5 (which refers to a problem of equation 3(p 2)=18 +(p 2). the students eliminated first the

term /p-2/ that designates a pizza with two missing slices; then they completed the two remaining

uncompleted pizzas, taking care (according to principle a) to add the 2 slices twice to the

member on the right of the equation (something that is placed exactly under the number 18

that represents eighteen slices of pizza). The symbol /p-2/ is seen in a synthetic way rather than

in an analytical one. This means, in terms of our Question (a) (section 1), that, here, we are

dealing with a phenomenon in which the sign effectively changes (from icon to symbol) while

as far as we can see its ground did not experience a comparably significant change.

However, we were able to observe, in another instance of our teaching sequence, students

moving more radically to a more abstract signs-ideas level. In fact, when solving the

aforementioned pizza problem (fig. 5), a student wrote the equation /3p-6=Ip-2+18/ (sec fig. 6)

which witnesses a first spontaneous attempt to evolve to a more abstract way of thinking.

Indeed, the symbol /3p-I2/ does not refer to any concrete data; it can only be understood in

terms of an abstract grouping or association of the given data; in doing so, new interpretants (in

a Peircean sense) of previous signs were constructed.

Let us now discuss one of the problems that we could detect in the passage from (ii) to (iii).

Icons give a somewhat tangible spacial presence to the objects that they are representing. Thus,

when students applied principles a and b, the transformed equations appeared naturally: the

resulting equations were there. There was no difficulty in giving the equation any specific

spacial configuration (see fig. 4). In contrast, when students had to use symbols, after a

transformation, they had to represent the new equation (which reflects the current state of the

problem-solving procedure). The new equation requires keeping track of the results of We

transformation actions as well as co-ordinating, in a more abstract way, the different

relationships between all of its terms. This requirement (upon which is largely based the success

of a symbolic algebraic thinking) is not simple, as we can observe. In fact, fig. 7 shows the case

of a student that solved completely similar problems in steps (i) and (ii) but was unable to move

successfully to a symbolic algebraic thinking.
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The video analysis revealed that the student loses sense of the

actions undertaken. The underlying algebraic equality, which

was the axis of the procedure, is lost. She is not able to give a

sense to the symbols /1e+3/ (i.e. the transformed member on

the left) and /5/ (i.e. the transformed member on the right).

To conclude our discussion, let us note that, in step (iii), the

students conceived the written equation as a static support upon which one carries out the

actions in order to solve the problem. This means that the written equation does not evolve in a

sequential manner, line by line, as one would expect in the case of a 'competent' utilization of

the algebraic language. Here. the written equation has a heuristic value that guides the actions

of the resolution. The 'competent' utilization of the equation rests upon a code that is, like all

other codes, socially constructed. It seems to us that it should be from this viewpoint that the

transformations of equations be approached in the classroom. However, only after the students

have had the opportunity to construct a content (i.e. a meaning) for the symbols. Otherwise,

the symbols remain empty (i.e. meaningless) and, strictly speaking, cannot be symbols.
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EXPLORING UNDERSTANDING OF DATA REDUCTION

Chris Reading and John Pegg
University of New England, Armidale, Australia

There has been a growing recognition throughout Australia of the place of statistics in the
mathematics school curriculum. Part of the impetus for this has been the strand status offered
statistics (within Chance and Data) in A National Statement in Mathematics for Australian
Schools. As expected, this emphasis in the curriculum has been mirrored by similar changes in the
research agenda. An important aspect of research has been the consideration of what is meant by
'statistical thinking'. This paper takes up this theme by considering students' responses to two open-
ended tasks, one presents data in raw form and the other graphically. Both require a similar
application of data reduction techniques. A developmental sequence of nine levels was identified and
examination of the differences between the different data presentations was analysed and explained.
To assist in this process the SOLO Taxonomy was employed as the theoretical framework.

Introduction
In Australia, both state and federal educational authorities have indicated that statistical ideas should

he incorporated into modern mathematics syllabuses and this should occur across the primary and

secondary school years. This important change has highlighted the poor research base that exists to

guide curriculum issues in statistics education. In an attempt to address this concern some

researchers have begun to explore students' thinking about various aspects of statistics using a neo-

Piagetian framework referred to as the SOLO Taxonomy (Biggs & Collis, 1982). This paper

contributes to this trend by exploring students' responses to statistical questions involving one aspect

of statistics, data reduction, and considering these in the light of the SOLO Taxonomy.

The SOLO Taxonomy has been described in detail elsewhere (see for example, Biggs & Collis, 1991;

Pegg, 1992). In brief, the model comprises two aspects, modes of functioning and levels of

achievement, which allow students' responses to be categorised. There are five modes and these

represent a growth in abstraction: from reacting to the world by physical actions (sensori-motor); to

using imaging and imagination (ikonic); to operating with second-order symbol systems such as

written language (concrete symbolic); to being able to deduce general principles and work deductively

(formal); to, finally, being able to challenge known theories (post formal). While these modes have

much in common with those suggesteii by Piaget there arc differences. Two are of relevance, The

first concerns the placement of Piaget's "early formal" stage into the cycle of levels in the concrete

symbolic mode. The second is that the earlier modes are not seen to replace subsequent modes.

Instead, earlier modes continue to evolve in their own right and to support growth in later modes.

Within each mode there are a series of levels. Three levels are relevant to the work reported here.

They are referred to as: unistructural a focus on one aspect; multistructural - a focus on several

aspects which are unrelated; relational a focus on several aspects in which inter-relationships are

identified. These three levels form a cycle of growth which reoccurs both within a mode and in

different modes as a student responds with greater sophistication. In this case of within mode

growth, the relational responses of the previous cycle are similar but not as concise as the
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unistructural level response of the next cycle. When different modes are explored the same pattern of

cycles occur although the nature of the element upon which the level is based is different. The value

of the SOLO Taxonomy lies in the depth of analysis it provides for interpreting students' responses.

Research Design
One hundred and eighty students, 30 from each of Years 7 to 12, were tested on a range of

statistical questions. The students were selected randomly from each of the top, middle and bottom

third of the population based on their mathematical ability. Within each year group there was a

male/female balance. This paper reports on the students' responses to two questions concerning

data reduction which is one of the earlier steps necessary in the process of analysing data. The aim

of the questions was to present students with some data and then have them reduce that data into a

more useable form. The questions were left open with no reference to any specific statistics in

order to view what students perceived as necessary steps in data reduction and to allow them to use

whatever facilities they had available and felt were suitable for the task. There were two forms in

which the data was presented. Raw data was presented in Part I and in Part II the data was

presented as a graph. This was done in order to investigate whether the form in which the data was

presented influenced the way in which students reduced the data.

Analysis of' Responses to Part I
The question, as it was presented to the students, is given in Figure 1 below. Upon investigating

students' responses it was possible to divide them into a number of levels based on the statistical

quality of the answer given. These levels were able to be grouped further based on the depth to

which the response indicated the ability of the student to cope with the process of data reduction. A

sample response for the each level within these groups is presented below.

Question Part I
As part of a large project which had to do with measuring and discussing the
human body, one of the tasks was to measure the lengths of peoples' feet to the
nearest centimetre. The results of the 29 students in the class are as follows :

26 26 26 27 27 27 27 28 28 28 28 28 28 29
29 29 29 29 30 30 30 30 30 30 30 31 32 32
33
(i) If you were asked to give a number, or numbers, ( to the nearest cm. ) which
could be best used to represent the size of the left feet in that class, what
numbers, or numbers, would you select ?
(ii) Give reasons for your selection.

Figure 1

First Group
First are those responses which dealt only with the requirements of the question. There were three

Levels, coded as 0,1 and 2, observed. These responses indicate consideration of the requirements

of the question with no use made of the data in formulating the response.

Level 0 These responses indicate that the requirements of the question were not understood

or an answer could not be attempted.
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(9209) (i) I haven't got the faintest idea. I haven't learnt it.

Level I These responses indicate an attempt at answering the question but either it is a

nonsense answer or a reason is given which does not answer the question asked. For example:
(8201) (i) Numbers.

(ii) Because it is a lot of numbers to choose from

Level 2 These responses indicate a reasonable attempt at answering the question but with no

explanation of how the answer was obtained or an explanation was given that was not related to the

data or question. At this stage explanations resort to personal experience rather than the data.
(8115) (i) I would be particular, but close my eyes and put my pen down on a number.

(ii) It is a random selection and easy to do.

Second Group
The second group of responses show an understanding of the question and attempt to rationalize

the reduction of the data. These attempts to process the data are hampered by the lack of
experiences and tools for reducing data. Again three levels were observed, coded as 3, 4 and 5.

Level 3 These responses indicate that, in attempting to justify a reasonable estimate or

estimates, the reason did not refer to a feature of the data but to some feature of the question itself.
(10201) (i) 28 and 30

(ii) Because that would tell you how big the foot was to the closest cm.

Level 4 These responses indicate that the data was used to obtain a reasonable estimate or

estimates and an awareness that the data needed to be used to justify this answer. However,
restricted experiences at data reduction result in all data being quoted as necessary in the reason.
(11111) (i) 26, 27, 28, 29, 30, 31, 32, 33

(ii) every childs(sic) foot is the length of one of these numbers

At this stage there is a divergence of the responses into TWO distinct paths which appear to

develop at seemingly parallel rates. These are labelled:

Path A for responses which reduce data based on measures of central tendency

Path B for responses which reduce data based on measures of dispersion.

Level 5 These responses indicate that the data could be reduced to a simple statistic. However,

attempts to justify the answer usually result in an unsophisticated description of the statistic

constructed. This indicates a readiness to engage in data reduction but a lack of experience and

tools needed to produce a statistically sophisticated response.
Path A (10202) (i) 28 to 30

(ii) It is the average size for the students.
Path B (11211) (i) The numbers, used to represent the size of the left feet in the class, t

hat I would choose would be 26, 27, 28, 29, 30, 31, 32, 33.
(ii) The reason I chose these numbers is that if I put down one of every

size measured it would give you an indication of the range (from
shortest to longest).

Third Group
The final group of responses indicates an understanding of question and data. The response is
given in an acceptable statistical form and the explanation attempts to relate back to the data. The

three levels of responses are coded as 6, 7 and 8, with the first two being split into A and B paths.
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Level 6 These responses indicate that the data could be reduced to the form of a simple

statistic and the reason for making such a selection related back to the data. However, the reason

stated appears to reflect a taught definition rather than a true appreciation of the data
Path A (10215) (i) 28.86

(ii) because it is the mean of all the feet
Path B (12201) (i) 26 - 33

(ii) That is the range.

Level 7 These responses indicate the need to present more information by discussing more

than one statistic. Reasons given still reflect the definitions of the statistics rather than discussions

of properties of the data. Some responses discuss concepts which relate to statistical measures from

the other path, for example a discussion of measures of central tendency may mention also some

aspect of measures of dispersion. This is the stage where the two paths are beginning to converge .
Path A (12207) (i) 30 cm

(ii) because it worked out to be the average and also the most number of people
in the class had their left foot 30 cm.

Path B (9101) (i) I don't really understand this question but I'll say the top one the bottom one
(length) and the middle one

(ii) it gives a fair idea of the range in sizes.

Responses which are not restricted to either Path A or B.
(10213) (i) I would give the numbers 28 and 29

(ii) I would give these numbers as there are about the middle of the class and you can
have a deviation of 3.

Level 8 These responses indicate the use of both measures of central tendency and
dispersion and the use of features of the data in an attempt to establish a link between the two.
(8215) (i) I would select either the mode 30 or the median 29

(ii) The mode occurs most often and would be the most common foot length in the
class, 29 is the middle of the range in foot sizes and as such should come close
to most of the non-extreme values.

The results, arranged by academic year, are presented in Table 1. These data illustrate a number of

interesting points. First, there are only two students (2%) from the three senior years whose
responses fall within the first group (Levels 0,1 and 2), whereas in Years 7, 8 and 9 there are a

number of students (17%) who have not fully understood the question. Second, of the four Level

8 responses, 3 were in Year 12 and 1 in Year 8. Third, there is a large bulge in all years at Level 6.

Last, them are three times as many students whose responses reflect Part A rather than Path B.

Table 1

Response Level and Path by Academic Year

Level

0
1

2
3
4

7
1

2
1

1

1

8
2
2

4
0
0

9
2
0
1

0
2

Year
10
0
0
0
I

2

11
0
0
0
0
3

12
0
1

1

0
1

T o t a I

5
5
7
2
9

A B A B A B A B A B A B
5 2 1 6 0 4 0 5 0 2 1 5 1 27
6 16 2 10 2 13 3 13 3 14 3 9 4 92
7 2 0 3 0 3 1 3 0 5 0 2 0

1 0 1 3 2 3 29
8 0 1 0 0 0 3 4

Total 30 30 30 30 30 30 180
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These results suggest that, for the process of data reduction given raw data, the level of response

improves progressively with academic year with many students showing a tendency to feel satisfied

once a simple statistic has been used in the data reduction process. Further, more students use

measures of central tendency rather than dispersion to describe the data.

Analysis- of Responses to Part II
The second part, II, was a general data reduction question in which the data was in a graphical

form. The question was designed so that no reference was made specifically to any measure of

central tendency or dispersion. However, answering this question meant that students also needed

to be able to understand and interpret the graph before they were able to engage in data reduction.

The question, as it was presented to the students, is given in Figure 2.

Question Part 11
A teacher was interested in how students performed in a spelling test to decide whether
they needed extra help. The graph below represents the scores out of 10 achieved by the
28 year 9 students in the class in the spelling test.

No. i if Students

7

6

5

4
3

2

I 2 3 4 5 6 7 8 9 10Test Score

(i) If you were asked to give a number, or numbers, which could be best used to
represent the score in the spelling test of students in that class, what numbers, or
numbers, would you select '?
(ii) Give reasons for your selection.

Figure 2

When the responses to Part II were analyzed they fell into similar levels to the Part I responses,

except that no Level 3 responses were identified. The hierarchy of responses includes the same

nine levels, arranged into the same three groups, as the analysis of Part I responses.

The results arranged by academic year are presented in Table 2. From this data a number of

interesting points can be observed. First there are less students (12%) from the three senior years

who responses fall within the first group, than in Years 7, 8 and 9 where there are a number of

students (20%) who have not even understood the question. Second, there was only one senior

and no junior students whose responses were coded as Level 8. Third, there were no students in

Level 3 and only 1 in Level 4. Fourth, there is a large bulge at Level 6 in all years. Last, there are

approximately three times as many responses in Path A as in Path B. Although there are less
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seniors in the lower groups there is not much indication of an increase of level with academic year

and irrespective of academic year many more students favour Path A than Path B.
Table 2

Response Level and Path by Academic Year

Level Year Total
7 8 9 10 11 12

0 I 4 3 2 0 0 10
1 2 3 2 2 0 1 10
2 2 1 0 5 1 0 9
3 0 0 0 0 0 0 0
4 0 0 1 0 0 0 1AB AB AB AB A B AB
5 2 0 6 0 5 3 2 1 4 4 4 3 34
6 16 3 13 0 11 4 13 3 18 1 8 7 97
7 I 3 1 1 1 0 1 0 1 0 3 0

0 1 0 0 1 4 18
8 0 0 0 1 0 0 1

Total 30 30 30 30 30 30 180

For the process of data reduction, where data are given in a graphical form, the level of response

improves progressively with academic year and many more students use measures of central

tendency rather than dispersion to describe the data.

Comparison of Part I and Part H
The framework appears to be adequate in explaining students' understanding as far as the basic

concepts of data reduction are concerned as it was possible to allocate all responses to a level.

Some students appear to have found these questions difficult with many students providing either

no answer or a personal response. However, this group includes those who could not interpret or

misinterpreted the graph. The slight upward shift in the trend of responses over the academic years

suggests the suitability of the levels as increased understanding would be anticipated.

Testing the hypothesis that the level is independent of the part of the question yielded X2 = 16.62

(6 d.f.) which is significant (p < .02) and indicates that the level into which a response is coded is

strongly dependent on whether Part I or Part II of the question is being coded. Many more
responses than expected were coded at the lower levels in Part II while Part I had more responses

than expected in the uppermost levels. The students exhibited a higher level of understanding when

the information was presented in raw form rather than as a graph. When the number of responses

that were graded into each path for Parts I and II were tested, the hypothesis that the path is

independent of the question part yielded X2 = 2.71 (1 d.f.) which is not significant (p > .1) and

indicates the path is independent of whether Part I or Part II of the question is being coded.

As far as the analysis of academic year is concerned, comparing the results presented in Tables 1

and 2 there are four noticeable trends. First, there are more junior students in the first group
(Levels 0, 1 and 2) than there are senior students, Second, there are mainly senior students in

Levels 7 and 8. Third, there is a large bulge in the numbers at Level 6 in every year. Fourth, there

are many more Path A responses than Path B in every year. The general trend is for a slight
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increase in the level of performance of the students over the six academic years and a preference for

measures of central tendency in the data reduction process.

The greater number of students who have responded by describing measures of central tendency

(Path A) could perhaps be due to the heavy emphasis that many teachers place on mean, mode and

median. This gives the students a restricted set of experiences on which to base their data reduction

and in fact may force those who would naturally he inclined to follow Path B processing to follow

what to them may he a less natural reasoning pattern. The large bulge of responses at Level 6 is the

point at which students are using one simple statistic to describe the data. This may be due to the

fact that once students have been presented with simple statistical facts at school there are limited

opportunities for data exploration and so they do not have the chance to develop more advanced

data reduction skills.

Despite the similarities, there are some differences between the sets of data for the two parts of the

question. Three in particular show up in a comparison of the results presented in Tables 1 and 2.

First, the number of senior students on Level 0, I or 2 is much larger for Part 1 1 ( 1 I ) than for Part I

(2). Second, the overall number of responses at Level 7 or 8 is much larger for Part I, (33), than

for Part II ( 1 8). Third, Levels 3 and 4 have far fewer students for Part 11 ( I ) than for Part 1 ( I 1 ) .

The small number of students in Levels 3 and 4 in Part II could he due to the fact that there were

more responses in the lower group for that part. There were a number of students who completely

misinterpreted the graph and this made it impossible for them to formulate a sensible answer. These

responses were graded in the first group and so would help to account for the larger number of

students in the lower levels for Part II. This is a problem associated with understanding the graph,

rather than the reduction of data and appeared to particularly be a problem with Year 1(1 students.

The larger number of higher level responses for Part I suggests that students are better able to make

detailed statistical descriptions of data when they are presented as raw data rather than as a graph.

SOLO Taxonomy Framework
The levels described earlier are now used along with the SOLO Taxonomy to create a framework

which could he used to assist with the interpretation of student responses. The first group of three

levels contained responses which were ikonic in character while the second and third groups

represented two different cycles in the concrete symbolic (CS) mode.

The responses in the ikonic mode suggest no link could be made between the required task and any

sort of symbolic representation. Such responses were mainly from students in the junior years.

Within this mode, there is a framework of growth with responses similar to those in levels 0, I and

2. Here level I responses can he coded as a mixture of unistructural and multistructural levels

whereas level 2 is relational.

The responses in the second and third groups have been able to link the concepts in the question to

concrete experience. Every indication is that the question has been understood and the reasons
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given link directly to the question or the data. These responses are in the concrete symbolic mode.
Within this mode two cycles became evident each containing three levels, unistructural,
multistructural and relational.

The first cycle involves reducing data into a more useable form. The elements in the first cycle are
the actual pieces of data themselves (data items). A relational response in the first cycle is not
achieved until all data items have been considered as a functioning set and represented in a concise
form. In this cycle, the unistructural, multistructural and relational levels correspond to the levels 3,
4 and 5 as outlined earlier. The level 5 responses sharing a split into two paths.

The second cycle involves appreciating that the reduction of the data creates statistic(s) which are
being used to describe the features or behaviour of the data. The elements in the second cycle are
the various features (or properties) of the data which statistical data reduction are trying to describe.
A relational response in the second cycle is not achieved until the student is able to consider various
data features and the fact that these are related when it comes to considering the overall data
description. In this cycle, the unistructural, multistructural and relational levels correspondto the
Levels 6, 7 and 8 as outlined earlier. These first two levels still contain the separate A and B
processing paths. However, at the multistructural level there are also responses which show
evidence of elements from both paths.

Conclusion
It is possible to develop a hierarchy of levels to categorize responses to questions involving data
reduction and these categories can be interpreted using the SOLO Taxonomy. Also, it appears that
there are two possible paths of reasoning in the second and third groups (first and second cycle CS
mode, respectively) and the form in which the data is presented may influence a student's choice of
method of data reduction. Overall, the understanding of data reduction appears to be better when the
data is presented in raw form rather than as a graph. In SOLO terms, many students, particularly
those who responded in the first cycle (CS mode) with data in raw form, found the additional
cognitive load associated with interpreting the graph to great and responded to Part II with responses
of the ikonic mode. Students who responded in the second cycle (CS mode) did not, in general, have
this problem. Students are far more likely to reduce the data using measures of central tendency than
dispersion irrespective of the form of data presentation.
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"Wouldn't It Be Good If We Had A Symbol To Stand For Any Number":

The Relationship between Natural Language and Symbolic Notation in Pattern
Description

Dr Ted Redden

University of New England

Armidale, Australia

Discussion on the use of number patterns to provide a context for the development of early

algebraic concepts and notation often emphasises the role of language as a significant step in

the developmental sequence. This paper reports on a set of responses collected from a large

sample of 10 to 13 year old children. The responses were stimulated by requests to
generalise number patterns in a variety of ways. The data was coded in a qualitative way
prior to being subjected to a model building process using multi -way frequency analysis and

the calculation of parameter estimates measuring the strength and direction of the association

between response categories. The findings indicate a significant association between the
natural language descriptions and the symbolic notation used by children. Further, teachers

need to be aware that only one group of natural language descriptions appears to lead to the

development of algebraic notation.

The need to contextualise the initial instruction in algebra has been the subject of considerable
discussion in recent years (Rojano & Sutherland, 1993; Mason et al., 1985). Several such contexts
have been considered but those that seem to have been the subject of considerable discussion include
number pattern environments and technological environments such as spreadsheets. It seems
inherently sensible to teach the language of generality to children by providing them with something
to generalise.

Mason (1985, 1992) popularised an approach to developing algebraic thinking through the
expression of generality in contexts that involve some form of number pattern. This approach has
been adopted and developed by others (Pegg and Redden, 1990a; Pegg and Redden, 1990b; Board
of Studies, 1989; Romberg, 1989; Australian Education Council, 1991). While the approach has had
considerable support, the research evidence (Pegg and Redden, 1990c; Arzarello, 1991; Redden,
1993; Redden, 1995a; MacGregor and Stacey, 1993) that has been reported on this approach has
identified a range of response types in children's attempts to describe number patterns, indicating a
variety of conceptualisations of those patterns.

The Vygotskian perspective (1986) of the role of language in concept development is supported by
Mason et al (1985) and Pegg and Redden (1990), who have emphasised the role of natural language
in the use of patterns for developing algebraic notation. If the use of natural language is central to this
development, it would seem reasonable to propose that there is a relationship between the natural
language children use to describe patterns and their ability or willingness to use algebraic notation.
Hence this paper investigates the research question:

Is there an association between the categories of pattern description using natural
language and the categories of symbolic language used?
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Method

To investigate this question 1435 children aged 10 to 13 were presented with 4 number pattern
. stimulus items and were asked four questions about each item. The first question was designed to
investigate comprehension of the stimulus item. The second question was designed to investigate the
children's perception of the number pattern, while the third question explored their ability to apply
their rule beyond a countable example. Finally, the last question investigated the children's readiness
to express their natural language using the formal symbolism of mathematics. The precise wording of
these four questions changed with both the pattern context and the mathematical background of the
children. One of these stimulus items is presented here as Figure 1.

Here are some chains
of Matches

EDI

ELM

(a) What is the next term in the
pattern?

(b) Describe a general rule for
the pattern in natural language
(c) Calculate the value of an
uncountable term (eg. n=80)
(d) Write their rule in the
symbolic notation of mathematics

Figure 1
A number pattern Stimulus Item

Approximately half the children (Years 5 and 6) had no formal exposure to school algebra while the
older children (Years 7 and 8) had been exposed to some algebra instruction, which may have
included the use of number patterns as a contextual vehicle.

This paper reports the data associated with just one of the four stimulus items (see Figure I). Similar
findings were associated with the other three stimulus items (Redden, 1995).

The focus of this analysis is the coded responses of the 1435 respondents. This coding process took
steps to establish both reliability and validity. The issue of reliability was addressed by calculating
coefficients of inter-coder and intra-coder reliability. A coefficient of 90% was set as the criterion for
adequate reliability in the process. Validity of the coding process was established by comparing
coding categories with the reported categories of other researches using related items (O'Brien, 1991;
Macgregor and Stacey, 1993; Ursini, 1991; Meira, 1990; Erickson, 1988).

Five major categories of natural language were identified. Table 1 provides the category name,
descriptor, an example of a response and the frequency of responses in that category Table 2 presents
a similar set of data for the use of symbolic notation categories.

To investigate of the relationship among the various component codes the technique of multi-way
frequency analysis available on the SPSS platform as Log-Linear Analysis (Norusis, 1990) was
used.

Table 1
Natural Language Categories and Frequencies (n=1435)

4 - 196

2 04



Code Descriptor Example Frequency
360No Attempt No attempt was made to answer

the question
Inappropriate This group indicated a failure to

understand the question or
repeated the question

How many wheels
do you need?

95

One Example This group gave a value for a
specific example rather than a
general description

To make 5 squares
you need 16
matches

306

Successive
Description

This group made use of the
dependent variable only. They
tried to calculate a term in the
series given the previous term

Add three every time 294

Function This group described.a relation
between the independent and
dependent variables

The number of
matches is the
number of squares
times three plus one

380

Table 2
Symbolic Notation Categories and Frequencies (n=1435)

Code Descriptor Example Frequency
No Attempt No attempt was made to answer

the question
557

Operation
Symbols

Attempts at symbols were
restricted to those commonly used
in arithmetic

4x5= 20 279

Arbitrary use
of letters

These responses indicated a
knowledge that letters were used
in mathematics but reflected little
knowledge about their correct use
in algebra

x + y

or
a = 4 x 2

182

Iterative
Description

Symbols reflect the repeated
adding of a constant term

4 + 3'

or
y=4+3+3+3

140

Algebra Successful use of algebraic ideas x = 4 + 3(n I) 277

The process of model-building involved taking four variables into the model (the above two together
with school year and responses to question (C) in Figure 1) and removing complex interaction terms
in a step down selection strategy until a parsimonious model was identified that adequately
represented the data. A full description of the process and underpinning assumptions is reported
elsewhere (Redden, 1994; Redden 1995). The resulting model provided a conceptual framework for
the analysis of significant relationships within the data. In particular, log-linear analysis provides
parameter estimates describing the strength and direction of associations between the categories of the

variables being considered. Even with the large sample of 1435 children, limitations of expected cell
frequencies required restricting the number of categories for natural language and symbolic notation

to four each. As a result of carefully considering similarity between categories the decision was made

to combine the No Attempt and Inappropriate categories in the Natural Language component, and to

combine the Arbitrary use of Letters and Iterative Description categories in the Symbolic Notation

component.

4 197 20-5,



Results

The question being investigated in this paper requires us to focus on the association between Natural
Language and Symbolic Notation. From the data presented in Table 3 it can be seen that the null
hypothesis:

that Natural Language and Symbolic Notation are independent

must be rejected due to the partial associations for the interaction being significant (p<0.05, df=9).
Therefore there is a significant association between the responses to Natural Language and the
Symbolic Notation responses. A more detailed picture of this relationship can be gleaned by
considering the contingency table and the associated parameter estimates. This information is
presented as Tables 3 and 4.

Table 3
Contingency Table Comparing; Natural language and Symbolic Notation

Natural
Language

Symbolic Notation
No

attempt
Operation
Symbols

Athitrary
and

Iterative
notation

Algebra Totals:

No attempt/
inappropriate

374 41 26 14 455

One Example 93 149 56 8 306
Successive
Description

53 30 181 30 294

Function 37 59 59 225 380
-Tota1s: 557 279 322 277 1435
Partial association83.28 p<0.05

The frequency data is presented in graphical form in Figure 2. The pronounced saddle shape indicates
the changing level of association between pairs of categories.

FUNC

SUCCA
0

1 EG

NA

S
OS

Y07boiic REPTLan
gliage ALG

Figure 2
Response Surface of Natural Language and Symbolic Notation
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The strong positive associations indicated by the parameter estimates of Table 4 are represented by

the high points on the ridge of the responses surface.

The associated Z scores for the parameter estimates are also presented in Table 4 and indicate a
number of pairs of association significant at the p<0.0005 level. (The very conservative alpha value
of 0.0005 (Z=3.291) was taken, in order to guard against a rapidly escalating type 1 error rate that
might arise from the large number of comparisons being made).

Table 4
Parameter Estimates and Z Values of Natural language and

Symbolic Notation Comparisons
Natural

Language
Symbolic Notation

No attempt Operation
Symbols

Arbitrary
and

Iterative
notation

Algebra

No attempt/ 1.358* 0.008 -0.416* -0.950*
inappropriate z=14.104 z3.072 z=-3.748 z=-8.162
One Example -0.287 0.829* -0.384 -0.158

z=-2.193 z=7.322 z=-2.869 z=-1.353
Successive - 0.677* 0.089 0.993* -0.405*
Desciiption z=-4.952 zl.744 z=10.555 z=-3.787
Function -0.393 -0.926* -0.192 1.512*

z=-2.157 z=-4.257 -1.295_ z=12.905
* Significant at p<.0605

The high ridge on the response surface in Figure 2 reflects the significant positive associations
between the pairs of categories (IA, NA), (IEG, OS), (SUCC, REPT) and (FUNC, ALG).
Further, the only significant positive associations found among all four stimulus items lay on this
ridge. This ridge represents the diagonal of the contingency tables going from top left to bottom right.
Conversely to the above positive associations, the significant negative associations all lie off the

diagonal identified.

The direction and strength of the associations of categories between the Natural Language component
and the Symbolic Notation component indicate a consistent relationship between the natural language
of pattern description and the symbolic notation to represent that language. However, there was a
design issue that may have interfered with the clarity of this relationship. It will be recalled that Years
5 and 6 had had no experience with algebra and that Years .7 and 8 had had some introductory
algebraic experience. It seemed reasonable to pose the question of whether the associations identified
above would be similar among just the Year 7 and 8 students who had had experience of learning
algebra.

Previously, the three way effect of Natural Language by Symbolic Notation by School Year was not
included in the log-linear model, with the implication that there is a similar pattern of association for
Natural Language by Symbolic Notation among the Year 7 and 8 children as there is for the children
in the whole sample. To investigate this a,confinnatory log-linear analysis was performed on the data
that included only those respondents from Years 7 and 8. This subset of 834 respondents satisfied
the criteria for a well-fitting model. The partial chi-square value of 416.16, with 9 degrees,of freedom
for the contingency table, confirmed the existence of a significant association between the variables
(p<0.0005). The familiar saddle shape was once again in evidence among this older group of
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children. Thus while the relative frequencies of the cells changed to reflect the older children's
responses, the nature of the association between the variables did not change, inspite of the early
algebraic instruction the Year 7 and 8 children had received.

Discussion

The ability to express generality does not appear automatically in all children, nor is it an intrinsic
skill that can be called on at will. Further the use of algebraic symbolism seems to be only associated
with one category of natural language descriptions. While the various curriculum documents referred

to at the beginning of this paper supported the focus on language development, they did not make
explicit the precise nature of the language required for symbolic notation to become a natural
extension of children's communication strategies.

The above results established a statistical association between natural language and symbolic
language. The issue that arises from the identification of this association is whether the functional
language description is a necessary precursor for the successful use of algebraic notation. (The data
did not provide evidence of any cause and effect relationship between the components since a
temporal difference in the appearance of the response sets was beyond the scope of the survey.) More
specifically, can some children use sophisticated symbolic language without using natural language
of a similar level of sophistication? Within the context of this study the issue is: can children provide
accurate algebraic descriptions of number patterns without functional relationships in natural
language?

Across the four stimulus items approximately 80% of all algebraic responses were associated with a

functional description in the natural language component. What of the other 20%? Had this group of
children been forced to reconceptualise the pattem when asked to provide a symbolic response? Were
they able to produce a symbolic response independently of their natural language? Is the association

between natural language and algebraic symbolism a transitory one? It could be that the process is
analogous to a person using a foreign language. Initially the person formulates a response to some
stimulus in his or her native tongue and then translates it into the new language. As competence in the
new language develops people formulate responses in the new language thus bypassing the native
language. It seems plausible to suggest that beginning algebra students need to formulate descriptions

of patterns and relationships in their natural language prior to translation into the symbolic language
of algebra. As confidence and competence develop, the natural language can be bypassed and
descriptions formulated directly into the symbolic language. The opportunity to pursue these and
other issues was afforded by the more detailed investigation of the student interviews conducted ina

longitudinal study. Space restricts our ability to discuss these issues further in this paper, however,
they are discussed elsewhere (Redden I995b).

Indicative of the findings of the longitudinal study, was the comment by Erica, who was a subject
interviewed over a two year period. During this time her pattern descriptions had become more
sophisticated, while her use of symbolic notation had remained strictly arithmetic in nature and intent.
Finally, after struggling to produce a functional description of a number pattern involving both a
dependent and independent variable she began the task of producing a symbolic description of her

deliberations. After some consideration, and a perplexed frown upon her brow she offered the
observation:

Wouldn't itbe good if we had a symbol to stand for any number.
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ENACTIVISM AS A METHODOLOGY

David A. Reid

Memorial University of Newfoundland

Abstract As research is learning, theories for learning and research methodologies

in mathematics education overlap. For the Enactivist Research Group, enactivism

is both the theoretical framework and the methodology for our research. Key ideas

such as autopoesis, structure determinism, structural coupling, and coemergence

are used to make sense of the learning of all participants in research, researchers

included. This paper describes these key ideas and enactivist research methodology

in mathematics education.

Introduction

In his plenary paper at PME-18 John Mason (1994) reminded us of the
interconnection between the theories for learning we employ as psychologists of
mathematics education, and the methodologies we employ as researchers. It is
obvious that this must be the case when we consider that our research is a
particular instance of human learning, and ought to be understood in the same
conceptual frame as that which we use to understand human learning of
mathematics. In the following I describe how the theories of Maturana, Varela,
Lakoff, and Johnson (among others) have informed and defined the research
methodology of the Enactivist Research Group, as a model for enactivist research
in mathematics education.

Enactivism, and Experientialism and Embodied Cognition.

While there have been some recent expositions on enactivist theory at PME
(Edwards & Nunez, 1995) and in journals (Davis, 1995) a brief review is in order.
Such a review of an entire theoretical perspective is in many ways a futile
endeavor, but I hope here to touch on those points which are important to the
following discussion of methodology, and to make some connections and
contrasts with radical and social constructivisms.

Many of the ideas of enactivism can be found in the works of Merleau-Ponty
(1962), Wittgenstein (1958), and Bateson (1987), but the first presentation of
these ideas as a general theory for cognition comes in the works of Maturana and
Varela (Maturana, 1987; Maturana & Varela, 1992; Varela, Thompson & Rosch,
1991). They describe and name the key concepts of autopoesis, structure
determinism, structural coupling, and coemergence. These ideas complement the
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experientialism of Lakoff and Johnson to produce a theory for cognition as "the
enactment of a world and a mind on the basis of a history of the variety of
actions that a being in the world performs" (Varela, Thompson & Rosch, 1991,
P. 9).

The idea of autopoesis will seem familiar to constructivists, especially of the
more radical variety. Autopoesis refers to that property of complex dynamic
systems of spontaneous self-organization. The components of autopoetic systems
"must be dynamically related in a network of ongoing interactions" (Maturana &
Varela, 1992, pp. 43-44). That is, the components interact in ways which are
continually changing, but which at the same time allow for the continuation of
interactions so that the system continues to exist. In addition, the interactions of
the components of an autopoetic system are responsible for the production of the
components themselves. Autopoetic entities come into existence as a result of
their own properties, and also maintain their existence by modifying their own
properties.

The problem is how to handle the problem of structural change and to show
how an organism, which exists in a medium and which operates adequately
to its need, can undergo a continuous structural change such that it goes on
acting adequately in its medium, even though the medium is changing. Many
names could be given to this; it could be called learning. (Maturana, 1987,
pp. 74-75)

Learning then, for enactivists, is precisely this continual change which allows the
learner to continue to function as an individual in a medium. Some social
constructivists will be pleased to know that any sufficiently complex dynamic
system can be described as autopoetic, and an enactivist description of an
individual's learning could be applied just a well to a community as a whole.

Another idea which will be familiar to constructivists is that of structure
determinism. What an autopoetic entity does is determined by its own structure,
not by an external stimulus, which might trigger some action the structure was
determined to do. There is an important distinction to be made, however, with
some constructivist perspectives. It is not a matter of an individual having a
cognitive structure, which determines how the individual can think, or of there
being conceptual structures which determine what new concepts can develop.
The organism as a whole is its continually changing structure which determines
its own actions on itself and its world. This holistic vision of the cognitive entity
is central to the idea of embodied cognition, described by Lakoff (1987), Johnson
(1987), and Edwards & Ntifiez (1995).

It is possible, in fact probable according to empirical observation and
complexity theory (Kauffman, 1993, 1995), that autopoetic entities organize
themselves into networks of inter-action. When entities are in such a state, we
say they are structurally coupled.

4 - 204



If I have a living system ... then this living system is in a medium with which
it interacts. Its dynamics of state result in interactions with the medium, and
the dynamics of state within the medium result in interactions with the living
system. What happens in interaction? Since this is a structure determined
system ... the medium triggers a change of state in the system, and the system
triggers a change of state in the medium. What change of state? One of
those which is permitted by the structure of the system. (Maturana, 1978, p.
75)

Each acts according to its structures, but those structures are such that actions
become coordinated. From an evolutionary point of view this can be explained
by claiming that organisms which structurally couple are more likely to survive,
so such structures become the most common. Complexity theorists would argue
that such structures are inevitable at certain levels of complexity. In any case,
structural coupling is a integral part of learning, that is the self-modification of
autopoetic entities.

Structural coupling tends to be self-reinforcing, either because of the structures
on the entities involved, or because they form part of an autopoetic entity whose
autopoesis requires maintaining structural coupling among its parts. A favorite
example is the herd of antelope, which leaves a single member behind when it
moves from hilltop to hilltop, to act as a sentry for the herd as a whole. This
particular interaction between that antelope and the herd threatens that
individual, but for the herd as a whole it is a form of structural coupling which
allows the continuing existence of the herd as an autopoetic entity.

Enactivist Methodology

Enactivism, as a methodology, a theory for learning about learning, addresses
several levels of the activity of research. The level most familiar to most of us
will be the interrelationship between researcher and data, in which we find
ourselves learning new things within a context which is partially of our own
creation. Enactivism can also be used to talk about the interrelationships in the
research community, in which we as autopoetic researchers engage with other
researchers in ways which preserve the structural coupling between us. A third
level is that of coemergent autopoetic ideas which live in the medium of our
minds, and of which we are emergent phenomena (as the herd is of the
antelope).

A stereotypical image of research is the "experiment" in which we create a
controlled situation, set events in motion, and impartially observe the results.
This stereotype has already been extensively critiqued in the philosophy of
science, so I will restrict myself to describing the enactivist alternative. In all
research we establish a relationship, a structural coupling, with the milieu which
is to be our topic of study. We interact with the people, objects, chemicals, and
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ideas we find there. By so doing we modify the milieu for each of its inhabitants,
and the autopoetic entities in the milieu adapt in ways determined by their
structures but triggered by our presence. At the same time we engage in the
process we are there for, adapting in response to the triggers offered by the
milieu. Note that an important part of our structures are our theories, beliefs,
and biases. The changes which can be triggered in us, that is, what we can learn
about the research context, are determined by our theories, beliefs and biases.
What we learn is determined by what we know.

When I refer to the people, objects, chemicals, and ideas in a research
situation, I refer to what is usually considered to be the source of "data" which
is then interpreted. And there is "data" in enactivist research. The data
generated in my research include field notes, video tapes, audio tapes,
participants' writings, transcripts, notes based on viewing video tapes,
mathematical activity traces which summarize the actions in a video taped session,
research reports, conference presentations, and notes from discussions with other
researchers. These artifacts can be lumped together as "data", but at the same
time all of them record acts of interpretation, or a researcher learning in
coemergence with a research situation. It can be said that there is no data, only
interpretations and interpretations of interpretations. This is an important point
to keep in mind, although I will be using "data" and "interpretation"
interchangeably in the following, mostly to improve readability.

As a community, researchers in a field form the context in which their
research occurs. I have to learn in ways which allow me to remain in
interrelation with the participants and other aspects of my own research, and
simultaneously in ways which allow me to remain a member of this research
community. This establishes constraints. There are constraints offered by
research data and constraints offered by the research community. I cannot know
that the students I have worked with learn mathematics by a undertaking a series
of gymnastic maneuvers and remain in interrelation with those students, or my
video tapes of them. The "data" forbids some hypotheses. At the same time 1
cannot attribute their learning to messages beamed into their minds from outer
space, even thought the data offers nothing to disprove this possibility, because
such a hypothesis would sever my structural coupling with my research
community.

The analysis of data in enactivist research can also be seen as a process of co-
evolution of ideas. Theory and data coemerge in the medium of the researcher.
The necessity of theory to account for data results in a dialogue between theory
and data, with each one affecting the other. As enactivist researchers we attempt
to make use of this interaction to transform the analysis of data into a continual
process of change and encourage this process as the mechanism of our own
continuing learning.
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An Example of Enactivist Research

Over the past three years the Enactivist Research Group has been engaged in
exploring enactivism both as a theory for learning and as a research methodology
(Kieren, Gordon Calvert, Reid & Simmt, 1995; Gordon Calvert, Kieren, Reid &
Simmt, 1995; Reid 1995). In doing so we have explored two key features of
enactivist research, the importance of working from and with multiple
perspectives, and the creation of models and theories which are good-enough for,
not definitively of.

Multiple perspectives can refer to many aspects of enactivist research. The
most obvious is the participation of a number of researchers, each with her or his
own agenda, theories, and background. Enactivist research differs from
collaborative research in that there is no common goal or question in which we
are all interested (beyond the general nature of cognition). Particular research
interests of the group include deductive reasoning, conversation, recursive models
of understanding, and mathematical beliefs. At the same time we work with a
common collection of data, about which we each reach conclusions related to our
own interests and theories. These conclusions need not be parts of a single
consistent whole. In fact, particular interpretations might be quite different.
While some interpretations are not accepted by every member of the group, all
interpretations must be explicable. That is it must be possible to explain the
conceptual structure in which the interpretation holds, even to others who may
not see the world thorough that conceptual structure. I use the phrase "multiple
consensual contradictory perspectives," where "consensus" is used to mean the
explanation of interpretations in way which make sense to others, to capture the
important features of perspectives in enactivist research.

There are other ways in which multiple perspectives emerge. One is through
multiple revisitations of data which brings a researcher to a situation with new
theories and aims which represent the current structure of an ever changing
being. Another is through the examination of a wide range of data. The aim
here is nortocome to some sort of "average" interpretation that somehow
captures the common essence of disparate situations, but rather to see the sense
in the range of occurrences, and the sphere of possibilities involved. A third
source of perspectives is the act of communicating our research to others. By so
doing we invite audiences and readers to engage with us in enactivist research
producing their own interpretations of our ideas and data.

The selection of this wide range of data is not always a matter of planning.
Part of working with. the Enactivist Research Group is continually encountering
new situations which occasion reflection and interpretation. For each of us the
data we see is in some ways "found" and made sense of. This aspect of enactivist
research has been called "bricological" (Reid, 1995). Bricological research
combines the flexibility and creativity of bricolage, with an underlying logic of
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inquiry. Bricolage, as it is used in conceptualizing bricological research, favors
the production of complex structures, theories, models, etc. appropriate to
research on complex systems such as human learners and societies. It can be
contrasted with a technological attitude that favors production of lots of results
through straightforward, "clean" techniques. The logic of the bricological
methodology comes from the questions chosen for research, and the theories and
models with which the research begins. These questions, models, and theories
reflect expectations of what might be seen. These expectations correspond to the
plastic structure that determines the actions of an individual in a context. Just
as an individual's structure changes in changing the context, so our expectations
change even as we observe, interview, and analyze according to our expectations.

It is important to note that the theories and models of enactivist research are
not models of. That is to say they do not purport to be representations of an
existing reality. Rather they are theories for; they have a purpose, clarifying our
understanding of the learning of mathematics for example, and it is their
usefulness in terms of that purpose which determines their value. The recursive
dynamical models for understanding, developed by Kieren and Pirie (Kieren,
Pirie & Reid, 1994) and the language for discussing reasoning developed by Reid
(1995) are two examples of theories for.

Conclusion

As researchers we search for understanding of the learning of mathematics,
making use of psychological perspectives, theories for learning, to make sense of
what we see. I have given an example here of how one such perspective acts also
to make sense of what we do. Enactivism, based on an equation of knowing,
being and doing, provides a context in which it is easy to see research about
learning as a form of learning. It is not special in this regard, but I hope that by
presenting enactivism as a methodology I have presented it as a theory for
learning better than I might have, and that by describing that methodology
through a theory for learning I have been able to communicate the spirit of the
research that is done by the Enactivist Research Group.
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TEACHING LINEAR ALGEBRA : ROLE AND NATURE OF KNOWLEDGES IN
LOGIC AND SET THEORY WHICH DEAL WITH SOME LINEAR PROBLEMS

Marc Rogalski (Didirem,

Abstract. We show by empirical studies of student's products that solving linear algebra problems
which deal with inclusions or intersections of subspaces requires particular abilities in logic and set
theory. We precise the specific nature of this abilities, which is linked to the logical and set-theorical

status of the notions of equations and parametric representations for a geometrical object.

Resume: Nous mettons en evidence, d travers l'analyse de productions d'etudiants, que la
resolution de problemes d'algebre liniaire oti interviennent inclusions et intersections de sous-espaces
vectoriels exige des competences particulieres en logique et theorie des ensembles. Nous prEcisons la
nature specifique de ces competence& qui concernem le statut logique et ensembliste des notions
d'equations et de parametrage dun objet geornitrique.

Several studies have dealt with teaching and learning linear algebra at the
beginning of university courses. For example, in anglo-saxon context, some
references are Harel (1989), Hillel and Sierpinska (1994) ; in the french context
references are Artigue and Dias (1995) and Dorier, Robert, Robinet and Rogalski
(1994) ; see also Rogalski (1995). A recent book edited by Dorier (1996) proposes
a synthesis of problems encountered in teaching linear algebra. In the french
context, one of the three mains ideas developped is that there are prerequisites
settings, in particular logic and set theory (LTS). The present paper explains the
result of empirical studies, led in collaboration with A. Robert and J. Robinet, in
order to precise this hypothesis, which was preciously expressed in Robert and
Robinet (1989) and comforted by Doriees work (1990).

The hypothesis of LST prerequisites is studied through a detailed analysis of
student's performance and activity when solving problems dealing with subspaces
inclusion or intersection. Two versions of a same problem : "the hyperplanes
problem" (HP) were used ; the first one - called "the 1992 examination" - was
proposed in 1992 to 125 students ; the second one - called "the 1994 workshop" -
was solved by small groups (4 students) during training sessions in another
university year (1994). We will first present the two situations. Then student's
procedures and failures due to LTS, in 1992 examination, and detailed verbal
interaction during problem solving in the 1994 workshop will successively be
analysed. Overall conclusions will be drawn concerning LST prerequisites, and
finally we presents further hypothesis and suggestions for teaching.

I. The hyperplanes problem
I.1 The 1992 examination

The original text of the hyperplanes problem (HP)

" Let Ei, E2 and E3 be subspaces of R4 defined by equations el, e2 and e3

el: 3x-2y-z+t=0, e2: x+y+2z-t=0, e3: 5x +3z -t =0.
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(a) Compare E3 and E1nE2. (b) Determine all subspaces of R4 containing E1nE2, and precise
how you choose to search and represented them.

The HP was part of a partial examination involving also three other exercices
(about calculus). It was given at the middle of the university year. Previous
teaching in linear algebra was : Gauss method for linear equations, geometry in R3
including pencil of planes, theory of rank of vectors in Rn, and dimension of
subspaces in R", with the twofold definitions, through linear equations or by linear
parametrical representation.

In this paper, our results will concern question (a) only.

1.2 The 1994 workshop

In a "workshop", there are seven groups of four students in the class-room ; each
group has one hour and a half for solving a problem without indication and write
his solution. The teacher interacts with a group only two or three times. Verbal
interactions give us a better view of difficulties for solving the problem.

The new text of the hyperplanes problem

" 10/ Two subspaces El and E2 of R3 are given by equations et and e2 :

el : 3x - 2y z = 0 ; e2: 2x y + 2z = O.

Determine all subspaces of R3 containing E1nE2.

2° / Three subspaces E1, E2 and E3 of R4 are given by equations e1, e2 and e3 :

el: 2x+y-z+t=0; e2: x-y+2z-t=0; e3: 4x:y+3z-t=0.

(a) Compare E3 and E1nE2. (b) Determine all subspaces of R4 containing E1nE2, while

specifying how you have chosen to represent them.

Changes with respect to "1992 examination"

* The workshop hapened at the same place in the university, year, and more time
was given for solving the problem:

* Changes were introduced in the text begining by the question of the subspaces
containing E1nE2, and in R3 instead of R4 : students have be taught about pencils
of planes in R3, and we hope to enable - through analogy - a transfer to R4.

* In 2*/ (a), students are asked for giving two methods in order to impulse
interrogations about methods in 2°/ (b).

In this paper results will only be concerned with the impact of insufficient
knowledge in LTS. Other aspects of the HP are studied in the book edited by Dorier
(1996).

It Strategies, procedures and LTS prerequisites in the "1992
examination"
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11.1 Mathematical analysis of the hyperplanes problem

For the 1992 examination, analysis is given for the question (a) only. Possible
strategies (which can be correct or false in their realization) dealing with objects
and notions of linear algebra are presented in figure 1. Abrevations are explained
below the figure, and detailed solution ig given then.

Figure 1 : graph of procedures

Dotted arrows mean that the deduction may be implicite in students copies.

Legend for the procedures
G3 : applies Gauss method to el, e2 and e3 IF : says the (false) inclusion EinE2 D E3

G2 : applies Gauss method to el and e2 IV : says the (true) inclusion E3 D EinE2

IG : looks if generators of EirE2 E or e E3 E : says the (false) equality E3 = EinE2

EI23 : proves that E InE2nE3 = E 1nE2
Eli3 : proves that EinE2r1E3 = EirE3 (I = I, 2)

3CL12 : says that e3 = ae1 + pet

P3V : gives a correct parametric

representation for E3

P3F : gives a false parametric

representation for E3

P12 : gives a parametric representation

of EinE2

The detailed solution

The Gauss method on equations can be writen under two different forms :
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-t+2z+x+y=0 -t+2z+x+y=0
-4 or 1G3 > z +4x -y =0

z;4x-y=0 0 = 0

for between equations there is the relation e3 = el + 2e2 : 3CL12

* Hence E1nE2nE3 = E1nE2 : E123 . With a variant G'3 of G3, ei and e3
(i = 1 or 2) remain : it is E1i3 , hence E1nE2 = E1nE3 . From there, one can
guess an inclusion or an equality between E1nE2 and E3. If one has understood the
elementary set theory, one conclude IV , if not one may conclude IF or K.
* From G2, one can give a parametric representation of E1nE2 by choosing x = u
and y = v ; this gives PI2 : x = u, y = v, z = - 4u + v, t = 7u + 3v ; that is
X = uU + vV, where U = (1, 0, -4, 7) and V = (0, 1, 1, 3) are generators of
E1nE2. Then one immediately verifies that U and V satisfy equation e3 : it is
Hence one gets inclusion E1nE2c E3.

Equation e3 : 5x + 3z - t = 0 gives a parametric representation for E3 :

x = X, y = t, z = v, t = 5X + 3v ; it is P3V , or P3F

10

in case of error in
calculation. For identifying the intersection of E1nE2 with E3, one may search
condition on (u, v) for the existence of (X, 11, v) satisfying : u = X, v = - 4u + v =
v, - 7u + 3v = 5X + 3v. For every (u, v), one can compute X and II (X = u, t = v ),
and v may be calculated in two ways : v = - 4u + v, and 3v = - 7u + 3v - 5X =
-7u + 3v - 5u = - I2u + 3v = 3(- 4u + v) : one obtains the same value. Hence
V(u,v), that is VME E1nE2, there exist (X, 11, v) such as ..., that is me E3. Hence
one gets the inclusion E1nE2c E3.

11.2 Students productions

The overall performance is : 30 success, 88 failures, 7 "problem not processed".

Concerning objects and notions of linear algebra usefull for solving the problem,
a distinction may be done between students showing deep misunderstanding and
confusions, and students showing an operational knowledge and using them for built
a "reasonable strategy" which may lead to success. This strategies are in figure 2.

Only 37,5% of the reasonable strategies lead to success.The main causes for failure
concern 61% of students with these strategies, and are the following :

writing inclusion in the wrong direction (IF) ; writing equality instead of inclusion
(E) ; difficulties in comparing the parametric representations of the subspaces.

These causes of failure deal with notions belonging to LST :
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adding conditions when defining a set means that it becomes larger or smaller ?
what really differs between inclusion and equality of sets ? what can be deduce
from the set equality AnB = B ? how to prove an inclusion (let XE A, then ...,
hence XE B) ? how do quantificators play in comparison of two parametrized sets ?
why is it necessary to give different names to the parameters ?

Strategy I (G2 or/and G3 > 3CL12 or E123 or Eli3 ) IV or IF or El 63 (50%)

Strategy 2 (P12 P3F or P3V ) Comparison of parametric repres.) 11 (9%)

Strategy 3 (P12 ) IG ) 6 (5%)

Total of "reasonable strategies" 80 (64%)

Figure 2 : distribution of reasonable strategies

In figure 3, we present the distribution of LST errors. The percent of "good"
students, that is implementing a reasonable strategy; but without success becduse of
LST weakness (37%, 41+8 students) is of the same order of magnitude that of
"bad" students, unable to implement any coherent strategy.

Moreover, the importance of LST errors is a non decreasing fonction of the
"quantity" of LST dealing in the choosen strategy : 0% in the strategy 3 (when the
generators are finded, it is easy to see if they belong to E3), 65% in the strategy 1
(which use comparison of sets and number of conditions for defining a set) and
73% in the strategy 2 (more difficult for LTS because it use also quantificators).

These data show the importance of deficiencies in LST setting in difficulties
concerning linear algebra, at least for problems of the type of the HP. This
confirms Dorier's conclusions (1990). For identifying more precisely LST
knowledges involved in solving such linear problems, we used verbal
communications exchanged in group problem solving in the 1994 workshop.

Figure 3 : success,

LST and other errors

production performance number %

no strategy, no answer, failures 45 36
notional confusions...

strategy 1 success 22
50

LST errors 41

strategy 2 success 3
9

LST errors 8

strategy 3 success 5
5

other errors than LST 1

reasonable strategies 80

111. Semantics of LST errors in the HP : the 1994 workshop

4 215



Activity of three groups working on HP was recorded. We analysis mathematical
difficulties of students in order to better understand their LST problems.
III.1 An example of chronology of work for one group

Question 1 8 mn determining subspaceEinE2, but forgoting the goal : determine subspaces

containing E1nE2.

Question 2(a) 10 mn using Gauss method and parametrics for E1nE2.
25 mn trying, without success, to interpret the result as an inclusion, with 2 mn of

teacher's support ; the "false" inclusion seems them intuitive, but is in
contradiction with the dimension...

Question 2(b) 18 mn unsuccess and discouragement, in spite of 3 mn of teacher's support ; a third
intervention of I mn releases them : EUREKA !

2 mn rapid assesment and conclusion on all points (with a return to question 1).
Redaction 12 mn perfect writing of the solution ; netherless it is not sure that they are

convinced by the reasons leading to the "good" inclusion E1nE2cE3.
Total : 1 hour 15 mn.

In this example, the group try to use strategy 2, with LST difficulties. Netherless
success is triggerd by short teacher's interventions. We will detail two main points
in the LST difficulties encountered in one or more groups.

111.2 Mathematical difficulties linked to weaknesses in LST knowledges

(a) LST and bunches of planes

* There is first a difficulty with the role of parameters s and t in the equations of
planes of a bunch sp + tq = 0 : students do not master the status of mute variables
when they parametrize a family of subsets (this difficulty does not appear in dealing
with linear combinations su + tv of vectors).

* There is confusion between a bunch and the subspaces elements of the bunch.
Quotations : "You say that a bunch of planes - that is a vectoriel subspace of the
straight line D ?" (does he main : containing D ?I ... or : "... bunches of planes are
the only subspaces that ...". Dialog about E3 belonging to the bunch defined by E1
and E2 : "E3 contains E rE2" "No, I think that it is E3 that is included..." ; "Es is
included in the hyperplanes bunch defined by E1 and E2".

This difficulties in the LST setting are of the same type : it / is a bunch defined
by a straight line D and E a subspace element of jr, what has to be written : Eel,
or Ecir ? De jr, or Dcjr, or... ?

(b) LST and the notion of equations of a geometric object

* Students's exchanges reveal difficulties in correctly expressing relations between

systems of equations and subspaces. The stable and convinced affirmation of the
false inclusion E3cE1nE2 seems to be due to a confusion equations/subspaces which

ti
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is classic : the" linear combination e3 = aei + be2 is automatically translated in this

false inclusion.

* The main long term difficult in groups work depends of set theory in two ways :

- What can be concluded from the equality EinE2r)E3= E1r,E2 ? General set

theory is poorly known by students and its previous functionning in concrete
situations was been scarce. Hence, they are unable to control their conviction with
set theory methods : to drawn a Venn diagram, or to make a standard reasoning
on sets as : "let x be an element of A let us express what it means and let us deduce
that x belongs to B...".

- Students have no possibility to make a control through considering the
number of constraints (number of equations : adding constraints restraints sets)
because for them "equations of a subspace" does not means "constraints on a point
(x, y, z) expressing that it belongs to a given subset".

It is like if the mapping between subspaces and equations is dependant of
operational domain only, not of conceptual domain : it is possible with only
calculations to go from equations to a basis of the associated subspace, and to find
equations for a subspace given in parametric form. For students, the contract
requires to apply some algorithms, and the strongness of linear situations [and their
didactical weakness ! I is that "it works" even when one does not understand what
these algorithms mean. This could explain the confusion of the first point : student
have not understand that equations and subspaces are not in the same domain, and
that their logical extension in terms of set theory are in opposite direction.

To conclude, it is possible to identify precisely the nature of some LST difficulties
which take place in linear algebra : from the point of view of logic and set theory,
the status of the equations of a geometrical object as constraints expressing that a
point belong to this object is not acquired by students. This reinforce the hypothesis
expressed in Dorier (1990) that LST prerequisites for linear algebra present
specificities linked to the notions of this mathematical domain.

IV. Some hypotheses and suggestions

We make some hypotheses for explaining this LST difficulty at the begining of
university. Then, suggestions are proposed for remedying these problems.

IV.1 Origin of the difficulties concerning equations of a geometrical ojec(

In french curriculum equations of straight lines in plane are introduced at the 9°
grade (14-16 year old students). But in fact students learn only algorithms to pass
from a line to his equation and vice versa ; many rules are used, with various
pedagogical practices in order to reinforce them, in such a way that, at the final
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time, the LST meaning of the concept of equation of a line has vanished. Then,
equations of planes and lines in space are studied in the same maner, and inclusion
or intersection problems are not studied.

IV.2 Few use is done of set theory before introducing linear algebra

Almost always, this theory is not really taught, even partially, .before the
university studies, and only in aroundabout way in the first university year. When
set theory is presented, it is rarely used in a significant way, and no relevant
advantage is taken of it (for example by interpreting universal implication as
inclusion). So, we think that one has to really learn the elementary and "naive" set
theory, and it is possible to make it not formal (see Legrand 1990) and to link it to
mathematical concepts.

IV.3 Developping cartesian geometry with research of geometrical loci

Many poeple think that cartesian geometry is usefull for giving mental images for
liner algebra. But, overall, we think it can illuminate the nature of the link between
equations and geometrical objects, by oppening a field of examples and motivations.
But it is necessary to use situations without algorithms, i.e. situations which are not
linear : curves and surfaces. It would be also necessary to ask problems involving
inclusions, equalities, intersections of such objects. In particular, researching "non
linear" geometrical loci,. with changes between geometrical and analytical settings,
and changing point of view between equations and parametric representations,
could offer a way for supporting the acquisition of the LST status of the notion of
equations of geometrical objects, which was shawn as a key-point in LST
difficulties for students at the begining of linear algebra teaching.
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Abstract
This paper presents the results of a subset of a Mexican/British collaborative project aimed at
investigating cultural influences ofmathematical practices in science. Here we report our analysis

of the relationship between students' approaches to solving algebra problems and their previous
school algebra experiences. The results point out that whereas there may be some invariant
obstacles to algebraic thinking which go across cultures, there are also many ways: in which the
school mathematics culture determines the ways in which students approach algebra problems.

Introduction
Mathematics and more particularly algebra has been viewed as a universal
generalising tool which can unproblematically be applied to different situations, and
which always takes the same form in different settings. Research on children's
difficulties with algebra has tended to assume that these difficulties are somehow
independent of culture, school culture and types of problems being solved (e.g.
Kuchemann, 1980). Vygotsky's theory (1978) suggests that studies of pupils cannot
be separated from influences such as school curriculum, school culture and the social
milieu in which the teaching and learning is carried out. The work of Lave (1988)

emphasises the way in which mathematics is used in different ways by students as a
structuring resource for solving problems. The articulation of this structuring
resource is more likely to be influenced by culture and problem situation than by a
use of mathematics as a general organising resource.

In recently completed project we investigated the ways in which the previous
mathematical experiences of students influenced the ways in which they tackled
mathematical modelling problems in pre-university science courses. Within this
project we worked with two groups of students, one in Mexico (9 students) and one
in the UK (12 students). The general aim of the Mexican/British project was to
investigate the mediating role of spreadsheets for expressing and solving
mathematical modelling problems within biology, chemistry and physics (Sutherland
et al., 1996). Students worked on a series of spreadsheet modelling activities within
their science classes throughout one academic year. In this paper we report on the
students' response to several algebra items (a subset of a more extensive science and
mathematics evaluation) which were administered to the students at the beginning
and end of the study. Individual interviews were also carried out with the students.
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Students' Algebra Background
Table 1 presents the organisation of the Mexican/British project stressing pupils'
different algebraic backgrounds, the common experience as well as the different
teaching received in their math courses throughout the research project.

Mexican Experiences
Pre-16 Algebra

Solution of linear and quadratic
equations
Factorisation
Rearrangement of formulae by
performing the same operation
on both sides of the expression
and by terms transposition
Substitution of values in a formula
Operation with dimensions
Predominate use of X Yand Z]
for naming variables

English Experiences
Pre-16 Algebra

Solution of linear and quadratic
equations (after using trial and
improvement methods)
Rearrangement of formulae by
performing the same operation
on both sides of the expression
Substitution of values in a formula
in context of work with functions
and graphs
Generalising and formalising
from patterns
Use of wide range of names and
letters for variables

School Mathematics
during the study

Pre-Evaluation
and interview

Common Experienc
with Spreadsheets modellin

in chemistry, biology,
h sits

Differential Calculus
Integral Calculus

Post-Evaluatio
and interview
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School Mathematics
during the study (7/12
case studies only)

Functions & Graphs
Sequences & Series
Differential Calculus
Integral Calculus
Mathematical Modelling



Although in Mexico there has been some recent curriculum changes, the background
of the subjects of the study corresponds to the old curriculum in which learning and
use of rules and algorithms was emphasised. The teaching of algebra emphasised
manipulation skills and algorithms for solving linear and quadratic equations. These
topics are stressed as useful skills that students need to master in order to be able to
work in university maths and physics courses, maths being taught in a
decontextualized way. Moreover, in the pre-16 maths and physics courses the
students were taught how to operate on literal symbols representing dimensions. It
must be stressed that both textbooks and teachers in the classroom tend to use the
symbols X, Y and Z for naming variables. Although other literal symbols are used,
these are usually linked to some specific context as, for example, "v" for velocity. All
9 Mexican case study students followed a mathematics course during our study.

In the UK there have been quite considerable changes to the algebra curriculum over
the last ten years, which have been partly influenced by the results of research on
children's' difficulties with algebra (for example the CSMS study, Hart et al., 1981).
In contrast to Mexico, symbol manipulation skills and algorithms for solving
equations are no longer emphasised. The students in this study would have spent
more time on ideas related to functions and graphs than on manipulative algebra.
They had also been taught trial and refinement techniques for solving linear and
quadratic equations (using a calculator) and were more likely to use this approach
than an analytical algebraic method. The UK students of the project were studying
three A-levels, predominantly chosen from biology, chemistry, physics and
mathematics. Only 7 of the 12 case study students were studying A-level
mathematics. The other 5 students were not studying any mathematics in their pre-
university course.

In this paper we present the results of the UK and Mexican students' responses to a
number of questions which were answered in the pre and post-evaluation. Our
analysis is also based on their responses to individual interviews.

Three Problems in the Pre and Post-evaluation
Conversion Problem. The following question was used to probe students' ways of
establishing and expressing relations; as well as their interpretation and use of
variables.

Write an equation to a) convert hours H into seconds S and b) to convert
seconds S into days D.

In the pre-evaluation, the majority of Mexican students (5/9) were not able to
produce a correct formulation of the problem; 1/9 produced a correct formula only
for part a); 2/9 produced correct formulae for parts a) and b). Analysis of their written
responses shows that 4 out of 9 students interpreted the given literals H, S and D as
shorthand for hours, seconds and days, and used them as tools for understanding the
problem and finding out how to convert time units. For example, this is the case of
Laura Elena (see Figure 1) who used H, S and D in her attempts at making sense of
the problem. For this she applied her knowledge about operating with dimensions, a
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subject she was taught in pre-16 physics courses. Only 2 students used the given
literals H, S and D as variables in their formulae, while 3 students introduced X and
Y for representing variables (see Figure I, Liztli). The introduction of X and Y for
naming variables is likely to be a consequence of their predominant use, both in the
Mexican textbooks and by the teacher in the classroom. It also suggests that the given
literals H, S and D had a strong physical referent for these students which might have
been an obstacle to using them as variables. The students' use of X and Y seemed to
help them (for example, Liztli) to identify and symbolise the variables of the problem
and obtain a correct answer.

Part a) Part b)
Laura
Elena N x .._i___ - 4 ey

li
5 x. _air, x, 11 , "D 4

14

:4

rfc..(1

Liztli
i h.. 3coc., s

X h...s , L3 - qeppe..s

3600 k = 5

Figure 1

In contrast, the answers given to this item by UK students showed that only 2 out of
12 students interpreted H, S and D as shorthand for hours, seconds and days. The
majority (10/12) of the UK students wrote formulae using the given literal symbols
H, S and D as variables which is likely to relate to their previous experience of using
a wide range of variable names in functional relationships. However, the formulae
produced by the majority of UK students suggest a wrong interpretation of the
question posed; 3/12 produced a correct formula for part a), and only 2/12 produced
correct formulae for parts a) and b). Instead of converting hours to seconds and
seconds to days they wrote how many seconds are in one hour and how many
seconds are in one day showing in this way a tendency to conserve and not to convert
quantities. These incorrect responses (see Figure 2, Meimei) are similar to the
"students&professor" error (Clement, 1982) although in the present case the source
of the error not necessarily can be attributed to an erroneous translation from natural
to algebraic language.

The nature of the Mexican students' responses to this item changed substantially in
the post evaluation. After analysing the problem using the given literals, as well as
whole or shortened words, all the Mexican students used the given symbols H, S and
D to express the relationship; 4/9 produced a correct formula for part a) and 4/9
produced a correct formula for parts a) and b). This new confidence in the use of
literal symbols, other than X and Y, to represent variables could be a consequence of
the spreadsheet experience in which pupils had been using different names and letters
for naming variables.

(4.
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Part a) Part b)
Meimei H=5 x60 x 60 D=5 xHx 24

Figure 2

By the post-evaluation the majority of UK students produced responses in a correct
form for both parts of the question, 3/12 for part a) and 6/12 for parts a) and b), the
number of correct formulae also increasing for the UK students. These results suggest
a better understanding of the question. This might be a consequence of the
spreadsheet experience where the data of a problem had to be rearranged in order to
fit the characteristics of the spreadsheet and feedback concerning the correctness of
the interpretation of the problem was provided.

Rearranging a Formula. The following question was used to probe students'
strategies for rearranging a formula in order to find an inverse function.

The relation between temperature expressed in Fahrenheit and in Celsius is given by

the formula F + 32. What is the formula for converting the temperature
5

Fahrenheit to centigrade?

The Mexican students' answers to this item suggest the influence of two methods,
namely, the balancing of an equation (that is performing the same operation on both
sides of an expression in order to make one of the variables the subject of the
equation) and the transposition of terms (that is transposing terms from one to the
other side of an equation in order to make one of the variables the subject of the
equation). These students had experience of both, balancing expressions and
transposing terms in order to rearrange formulae in their pre-16 algebra courses,
about two years before this study. The method taught at school in Mexico is usually
that of balancing expressions but, as teachers often notice that students tend to shift
to using the transposition method (often taught by older peers or parents), this
method is also taught. The use of the transposition method was used by 4 out of the 9
students and is clearly expressed by the record made by Liztli (Figure 3).

-.2= v C
-5-

F _
cf---311C

c c 9

Figure 3

However, a mixed approach, using both methods, is suggested by the formula written

by 4 students, c.-5 F- 32, which was probably obtained by trying first to balance the
9

equation by multiplying by 5 and dividing by 9 (in this way they eliminated the
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fractional number on the right side of the equation) and then they transposed the
number 32. A mixed approach like this is often observed in pupils' approaches to
equation solving, in particular when fractional numbers are involved. The same
approaches were observed during the post-evaluation. It is wonh considering that
between the pre and the post-evaluation there was no teaching on rearranging
formulae.

In the pre-evaluation, 7 out of 12 of the UK students produced correct responses and

5 of these gave their solution in the following form c F-32- which suggests that they
9 / 5

have first subtracted 32 from both sides of the equation and then divided both sides
of the equation by the whole fraction 9/5. When asked how they rearranged equations
they talked in terms of "doing the same thing" to both sides of the equation. These
students would first have met rearranging equations in mathematics using a

"balance" metaphor. They were happy to leave their answers in this form (i.e. with
9/5 in the denominator) because very little emphasis is currently placed on
simplifying algebraic expressions in the UK. Only 7 of the same 12 students (not the
same set of 7 who obtained correct answers to this item) continued to study
mathematics at A-level and these students were introduced to a new approach to
rearranging formulae in the context of finding inverse function, using a method for
unchaining a composite function. Of these A-level maths students, 5 who obtained
correct solutions in the pre-evaluation produced incorrect responses in the post-

evaluation. The incorrect responses were in the following form -s F - 32. We
9

conjecture that these new incorrect responses were influenced by the new approach
which they had recently been taught in mathematics. This conjecture is strengthened
by the fact that the two students who had produced correct responses in the pre-
evaluation, but who no longer studied mathematics, still produced correct responses
in the post-evaluation.

Reading a Numeric Pattern. The following item was used to probe students' approach
to reading numeric patterns from tables.

The following table shows the increase of population (in millions).

Year 1960 1970 1980 1990
Population 8 11 18 17

Can you predict the population for the year 2000 and 2010?

It has to be stressed that in contrast to the UK students who had previous school
experience in pattern recognition, this was not part of the Mexican students'
background.

Four different strategies for solving this problem were observed in the Mexican
students' responses to this item during the pre-evaluation: the constant ratio method
(2/9, both correct); the I st difference method (2/9, one incorrect, one incomplete); the
2nd difference method (1/9, correct); approximate solution without explicit
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calculations and guided by the context of the problem (3/9). In contrast with the
Mexican students the majority (11/12) of the UK students in the pre-evaluation
attempted to use a difference method and only one student used a constant ratio
method. This student and 6 of the others obtained appropriate answers. The UK
students were explicitly taught difference methods in their pre-16 mathematics,
which was not the case for the Mexican students. It could be argued that the constant
ratio method is more appropriate to the scientific context of the problem, and
interestingly the only UK student who used this approach was also the only student to
include units in his answers, which suggests a focus on the physical situation.

In the post-evaluation, the majority of Mexican students (6/9) used the constant ratio
method. They used different approaches for deducing the multiplication factor. One
of these is illustrated by the solution of Liztli (Figure 4). She used a tabular notation
and finds that given the population of a decade she can obtain the one corresponding
to the next decade by dividing the first by two and multiplying the result by 3.
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Figure 4

Another approach is shown in Figure 4, Juan. Here the student realises that to
calculate the new population he had to add to the previous one its half and he

expresses this general rule by writing the expression P+ P. Both of these approaches
2

might have been influenced by their experience in working with spreadsheets. In fact,

in the first one we observe a tendency to use a spreadsheet representation and to look
for a rule that would allow the generation of the numbers of subsequent columns
from the previous one. This might be seen as a recursive method. The second

approach also shows a tendency to use recursivity, in fact, the new numbers are
deduced by using the previously deduced ones. This approach could have been

influenced by the spreadsheet work which had emphasised recursive solutions within
the context of modelling problems. In the post-evaluation the majority of the UK
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students (8/12) used a constant ratio method (all correctly) and only 3 students used a
difference method. Again we suggest that the constant ratio method is likely to have
been influenced by the spreadsheet work.

Conclusions

Our studies with groups of Mexican and British pupils have shown that whereas there
may be some invariant obstacles to algebraic thinking which go across cultures, there
are also many ways in which the school mathematics culture determines the ways in
which students approach algebra and mathematical modelling problems. Clearly this
is a trivial statement in the extreme cases in which for example students have or have
not been taught any algebra. These results put into question research on students'
conceptions/misconceptions in algebra which only explain student differences in
term of psychological development. On the other hand what our research in showing
is that the whole notion of `school algebra' has to be unpacked with more attention
being paid to what is meant by school algebra in a particular school culture. This
analysis has to look much further that the superficial names given in a curriculum
document (for example "solving equations") on which many comparative work is
based. It also has to take into account method of assessment and also teaching
approaches.
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ON THE INTRODUCTION OF REAL NUMBERS IN SECONDARY
SCHOOL. AN ACTION-RESEARCH EXPERIENCE

Romero, I. (Granada University. Spain). Rico, L. (Granada University. Spain)

ABSTRACT: This paper is aimed to present some of the main results obtained in an action-
reserach study carried out with a class of children aged 14-15, in order to detect difficulties and
potentialities for the understanding of real numbers at an initial stage. Our approach is of curricular
type, and is based in a didactical process which rests in the simultaneus and complementary use of
the different representation systems, symbolical and graphical, of the real numbers; it also considers
key problems in the historical development of the concept. Interactional aspects are relevant to this
work, which focuses in conlict and discussion.

I. INTRODUCTION
The present work has been done within a research line in Mathematics

Education named Numerical Thinking, which studies the teaching, learning and
comunication fenomena of numerical concepts in the Educational System and in
society. The Numerical Thinking deals with the different cognitive and cultural
processes by which human beings asign and share meanings using different
numerical structures (Castro, 1994). It's an inquiry line which tackles this study from
a triple perspective. On one side, it deals with specific numerical structures;
secondly, it studies the cognitive functions that human beings develop through the
use of numerical concepts and properties; in third place, the Numerical Thinking
looks after the problems and situations which can be approached and solved by
means of the considered numerical structure and, specially, it analyses the
phenomenology that underlies the above mentioned structure.

From this perspective, our work can be framed in the conceptual field of Real
Numbers, in the sense stablished by Gonzalez(1995): set of concepts, procedures, and
relationships which constitute the mathematical structure of real numbers, toghether
with the activities and cognitive functions that characterize the ways of use of the
concepts, procedures and relationships of the above mentioned-numerical system, and

with the group of phenomena and situations that admit to be analysed through them
and the problems that can be approached with them.

In general terms, we have noted an scarcity of references in the research
literature above the subject. We have found reports over students'intuitions on the
concept of real number, but there is a lack of researchs with curricular orientation
which study in depth the development of such intuitions. Among the works directly
related to the topic, we can note different orientations:

-Works over the didactical epistemology of real numbers (Tall and
Schwarzemberger, 1978; Arsac, 1987; Arcavi and Bruckheimer 1987; Bum, 1990).
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-Analysis of students'conceptions over real numbers (Robinet, 1986;
Monaghan, 1988; Romero i Chiesa, 1994; Fischbein, 1995).

-Studies with didactical processes about real numbers (Douady, 1980; Corial et
al., 1993)

-Woks over students'conceptions about infinity (Fischbein and Tirosh, 1979;
Gardiner, 1985; Moreno and Waldegg, 1991; Tall, 1980).

At this point, authors like Monaghan (1988) and Fiscbein (1995) demand
further research in this area, because proyects carried out till the moment haven't
analysed the utility of a conflict-discussion approach departing from students'initial
conceptions. Our work is aimed to explore this proposal. More precisely, our aim
was to explore potentialities and difficulties ocurred when introducing the concept of
real numbers to pupils 14-15 years old by means of a didactical proposal
characterized by:

-Assuming the complexity of the concept and opening ways for the
presentation, understanding and solution of key problems in the construction of the
above mentioned concept.

-Being based in a complementary a simultaneus work with the symbolic and
grafic systems of representation of the real numbers.

-Being framed in a curricular context, considering both, the limitations and the
possibilities which the classroom , as a natural complex setting, provides.

2. METHODOLOGY
It is evident that this approach to the study of didactics of real numbers,

departing from a curricular -contex, is complex and presents a number of problems.
The social complexity of the teaching-learning-process, rich and dynamic as it is, can
be considered as a problem, as well as an aditional potentiality.

In our particular case, we added another important factor: the decision that one
of the authors (Romero in this case) were the teacher of a class of 14-15 years-old
pupils in which the experience was to be carried about, assuming the double role of
teacher and researcher. There were various reasons which led us to this decision:

-The current curricular treatment of the topic was far from an authentic
conflict/discussion approach, which was, in our opinion (and according to the
experts) the only meaninful way of dealing with the topic.

-The aboved mentioned approach posed a number of problems to be assumed
by another teacher.

-The direct work with the students was an advantage for the implementation
and development of our ideas. If we bear in mind that it was an exploratory study and
that we considered it as a dynamic and evolving process, the fact that the researcher
was an expert in the content was key to adapt herself to the unpredictable and
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continuous evolution of the process in matter of content and understanding, in order
to get the principal aim of detecting points of potentiality and difficulty in the
construction of the concept of real number.

In this way, as we have already mentioned, the presenting author had a role of
teacher researcher. The notion of teacher researcher has various possible meanings.
Richardson (1994) distiguishes between the notion of teacher researcher in the
context of what she calls practical inquiry and the notion of teacher researcher in
formal research. The main difference between this two types of research is that
practical inquiry is conducted in one's everyday work life for purposes of
improvement and there is an inmediate concern for finding practical solutions to
problems which arise in everyday reality; formal research is designed to contribute to
a general knowledge and its results must be presented, contrasted and valued within
the scientific community. We place ourselves in the context of formal research, being
our case that of a researcher expert in content and didactic of the discipline as
teacher.

In this conditions, the study was designed as an action-research experience.
The general structure is based in the stages that have been described as basic in a
action research process: Planification, Implementation, Observation and Reflexion, as
well as in the idea of sequentiality in cycles (Lewin, 1946; Kemmis, 1982; Elliot,
1973; Ebbut, 1985; Whitehead, 1984; quoted by McNiff, 1988; Castro, 1994). Our
particular scheme was the following:

CYCLE 1
1.1. Identification of the general research problem.
1.2. Development of the research problem: theoretical analysis.
1.3. General plan:

.Phase 1: Rational Numbers.
.Phase 2: Irrational Numbers and real Numbers.

1.4. Implementation of phase 1.
1.5. Observation and effects of phase 1.
1.6. Reflexion upon phase 1.

CYCLE 2
2.1.Revision of the general idea.
2.2.Readjustment of the general plan.
2.3. Readjustment of phase 2.
2.4. Implementation of readjusted phase 2.
2.5. Observation and effects of phase 2.
2.6. Reflexion upon phase 2.

FINAL CONCLUSIONS OF THE STUDY
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In order to define, articulate and specify our general research problem
(stablished in 1.1), we made a detailed study of the two first component of the
conceptual field of real numbers: the mathematical structure, and the cognitive
competencies or functions associated to the field (point 1.2).

To deal with structural aspects we made an analysis of the historical evolution
of the concept of real number, focusing our attention on the obstacles and conceptual
breaks detected in the historico-critical reflexins about the field (Artigue, 1990;
Gonzalez, 1995); we also considered in detail the different systems of representation
which have been constituted trhough the history of the concept and the problems
implied en each system.

To deal with cognitive aspects, we based on the notion of understanding by
Hiebert and Carpenter (1992); we focused on the systems of representation of real
numbers, their elements and relationships, in order to explore the use that students
make of each of these systems, the meaning they attribute to them and the contexts in
which they employ them, as well as the contradictions and conflicts that arise when
working with the different systems and the relationships among them.

With respect to the third component of our conceptual field, which refers to the
phenomenology of the implied concepts, it has'n been explicitly incorporated to our
study; that is, we haven't made a systematic analysis of the phenomena, problems
and situations charasteristic of the real numbers field. Nevertheless, we have made
use of a number of such problems in our work with the pupils.

Besides, we have paid an special attention to social and contextual aspects in
the process of knowledge construction.

Once we had made a detailed analysis of the research problem, we designed a
didactical plan to be implemented with a class of children aged 14-15. For that, we
stablished two research foci: the first focus was on the didactical problems and
potentialities derived from the symbolic notations of real numbers, and the second
focus was on the conflicts and potentialities arised in the work with geometrical
representations and the relationships between the different representation systems.
Both foci were broken down in a number of specific subobjectives (4 subobjectives
for the first focus and 5 for the second), which were made operative by means of
various Research Questions (8 for the fist focus and IS for the second); these
questions were proposed to the pupils as school tasks: exercises, working situations,
exploration works, exams or questions for discussion, that constituted the axis around
which the didactical process was articulated.

After this, we proceeded with the implementation of the designed plan with a
class of thirty two 14-15 year-old children in a Secondary School, being the author of
the paper 1. Romero the teacher of the group.
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Following our action-research scheme, we executed the consecutive stages of
implementation, analysis of the effects and reflexion for each of the planned phases:

phase I (corresponding to Rational Numbers) and phase 2 (corresponding to
irrationals and Real Numbers).

The data were obtained from different sources: students'written documents,
teacher's diary, audio and video tapes of classroom discussions. They were
interpreted, following a qualitative methodology, by means of Analysis Units,
constructed by the authors for reporting about the relationships between the
components of the didactical triangle Students-Content-Teacher:

CONTENT

Units for Content Units for Content

Organization Understanding

Units for Didactical
Interaction

From the analysis of these data, we have obtained information about different

problems and potentialities that were present when working with the students (14-15
years old) on the concept of real numbers at an initial stage, and the way they evolved
along the course of the didactical process. In the next section we present some of

these results.

3. RESULTS

Well classify the information obtained attending to those aspects in which a
meaningful progess in pupils'understanding could be observed and those ones that

revealed as specially difficult points in the construction of the concept of real

number.

Some of the most meaningful advances in pupils'understanding detected were
the following:
-Typology of possible decimal expressions employed by the .vtudents, meaning they

attributed to them and discrimination among different types of real numbers by

means of the decimal typology. At the begining of the process, only 50% of the pupils
recognise the existence of infinite non-periodical decimals and around 30% accept
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that these expressions correspond to numbers (for some of the studens a square root is
an operation); the examples given correspond to square roots, some infinite decimals
with arbitrary digits and a few mentions of ic; the origin of these decimmals is
attributed to square roots and, in the case of it to a fraction (lenght of the
circunference / diameter).

By the end of the didactical process around 80% of the students consider that infinite
non-periodical decimals are numbers, around 30% specify different types: square
roots, 7E, (the golden ratio), and infinite decimals with arbitrary digits (following a
rule or not), and they can correctly classify the different types according to its origin
which has became meaningful to them by working with the different types of
numbers in classroom situation or in exploring works.

-The use of different representation of real numbers according to the desired aim,
and the use of the correspondence between periodical decimals and fractions to
justify, by analogy, certain properties of infinite non-periodical decimals
corresponding to construable irrationals. It's interesting to note how the pupils
resorted to different representations of the real numbers according to different
objectives, and how they were able to make explicit that you need to use use
fractional representation in order to do arithmetic with periodical decimals, and you
need to do the same to represent them "exactly" on the number line. After that , they
have resort to the analogy periodical decimal/fraction infinite nonperiodical
decimal/radical to argue that you can do arithmetic with non-periodical decimal by
using their radical expression, and the same for representing them "exactly" on the
number line. (Although some children questioned the identification between different
representations and the aboved mentioned analogy, as we'll comment in the
difficulties section).

-The notions of conmensurability and unconmensurability. Corrections with the
correspondence between the real numbers and the number line. For these students
wasn't easy to understand the conept of unconmensurability of certain lengths with
respect to the unit of measure, departing from their decimal expression, infiniteand
non-periodical and, so, non correspondent to a fraction. But the work on classroom
situations in the geometrical context alowed a numer of students to construct a
common languaje which permited them to asign the term "proportion" to
unconmensurable ratios and to used it to solve problematic situations as, for example,
the understanding and classificaton of the Golden Ratio by comparing it with the
ratio of the length of the circunference to its diameter.

When pupils were asked to discuss the argument that "as two lengths always have a
common measure (and so they colud be expressed by means of fractions), all the
points on the line were rationals (because you consider the length from the point to
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the origin and measure this length with the unit lenght on the line)", 60% of the
pupils desagreed giving coherent arguments, and 26% refuted the given argument in
terms of the existence of "proportions", which corresponded to irrational numbers.

Some of the most meaningful difficulties in pupils-understanding detected
were the following;

-Certain aspects of the correspondence between operator), notation and decimal
notation of real numbers, and the construction of the concept of real number
supporting on its different symbolic representations and the relationships between
them. Various difficulties in the conversion fraction-periodical decimal and viceversa
were diagnosed. These difficulties make that this corespondence was stablished in an
intuitive way in most of the pupils. The lack of consistency and systematic reasoning
to support it is notorious at this stage, and the same occurs in the case of the
correspondence between the decimal and operatory notation of the irrationals, which
is also stablihed by many of the pupils (68%), but an intuitive and non-consistent
way; a number of problems were diagnosed here too.

-The conflict between the actual finitude of centain lengths unconmensurable with the
unit of measure and the potential infinitude of their decimal expression. The conflict
already arised in the case of periodical decimals. There were pupils who manifested
their difficulty in accepting that a periodical decimal could be represented "exactly"
on the real line by means of a fraction, because having infinite digits it could never be
represented "exactly", and then they couldn't admit that an infinite decimal and a
fraction were "the same thing".

Also, the students find very difficult to accept that the side of an square of area 3 has
a finite length and that its decimal expression is infinite and non-periodical; for that
reason the side of the square cannot measure 43 "exactly", for them. Even a girl
refused to connect on side of the square to the other because she wanted to paint
43=1,7320508...and, as it was infinite, she couldn't finish the length, she couldn't
reach the final point of collection.

We find that this conflict is perflectly reasonable, although it's solution is out of the
reach of pupils at this stage, because it implies the step from considering an infinite
decimal expression as a process to consider it as an actual thing, in terms of actual
infinity. Nevertheless, we consider important enough the arising of the conflict in the
process of constructing an understanding of real numbers.
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COUNTING, ESTIMATION AND THE LANGUAGE OF UNCERTAINTY

Tim Rowland

Homerton College, Cambridge

The empirical study summarised in this paper arises from earlier study of 'hedges' in
mathematics talk. Hedges are words and phrases which make the truth conditions of
an utterance less precise. In the mathematics classroom, hedges are an important
tool in the student's linguistic repertoire e.g. for protection against accusation of
being wrong. This study, based on interviews with 230 children aged 4 to I 1 , was
designed to trace the development of children's competence and tendency to hedge.

BACKGROUND AND PURPOSE

Ishka, an 11-year-old girl, was invited to assent to a combinatorial prediction by
another pupil. Ishka was more than somewhat equivocal in her reply: "Well maybe
not exactly, but it's around fifty basically?". In mathematics talk, students make
frequent recourse to such 'hedges', for a number of reasons, and often as an indicator
of uncertainty (Rowland, 1995).

Hedges include words such as sort of, about, approximately words which have the
effect of blurring category boundaries or otherwise-precise measures as well as
words and phrases such as I think, maybe, perhaps, which hedge the commitment of
the speaker to that which s/he asserts. Epistemic modality (mainly achieved in
English by the use of modal auxiliary verbs such as may, might) is another important
means by which speakers mark tentativeness about their assertions (Coates, 1983).

The study summarised in this paper focuses on pupils' recourse to hedges and modals
when presented with tasks which invite counting or estimation, Wiener (1972)
identified a vicious circle in children's attitudes to estimation: poor estimators, not
surprisingly, viewed estimation as "risky", avoided it, and remained poor at
estimation. Clayton (1992) develops this affective theme, presenting estimation as a
risk-taking activity.

The language of approximation may be deployed in order to achieve one or more of a
number of pragmatic goals (Channel!, 1994, pp. 173ft) and interpreted by reference
to the observance of a cooperative principle and maxims of conversation due to Paul
Grice (1989). This is elaborated in Rowland (op. cit.).

In their first two or three years at school, young children are conditioned to receive a
"How many?" question as an invitation to count rather than to estimate. Counting a
small set may be regarded as a less risky enterprise than estimating its cardinality. If
this is the case the young child's response to such a question is less likely to be
incxialised or hedged than the older child's. Furthermore, the young child will not be
able to hedge until s/he has learned how to achieve that effect with language.

This study was designed to test the hypothesis that modal forms and hedges will be
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relatively absent in mathematics talk in early childhood, and that thereafter one can
discern progressive development of modal/hedging capability and use in individuals
through the years of primary (elementary) schooling.

METHOD

An empirical study was carried out in a 4-11 primary school. There were 230
children on the school roll. Every child was asked the same three "How many?"
questions (see below) in private, one-to-one interview. The object was to test the
expectation that the language of modality and hedging will be more commonplace
among the oldest children (10 -1 1) than the youngest (4-5), with some sort of
continuum evident between these extremes.

The fieldwork centred on the following three tasks:

Task 1: The interviewer produces a plate on which 19 coloured sweets have been placed so that

each is visible. The child is asked, "Can you tell me how many sweets there are on the plate'! ".

Task 2: The interviewer produces a high-quality colour photograph of a small glass containing

14 sweets. The child is asked "Can you tell me how many sweets there are in the glass'!"

Task 3: The interviewer shows the child two thin plastic tubes (both are about 25 mm in diameter
and Ill cm high). One contains I() sweets, the other 20. The interviewer says "There are ten

sweets in this tube (indicates). I know that, because I counted them when I put them in. Can you
tell me how many sweets there are in this (indicates the other) tube'?"

In the first task, the child can actually count the sweets if s/he chooses to do so, but
may also make a reasonable estimate if s/he so chooses. The second task was
designed so that the precise number of sweets in the glass was indeterminate. It can
not reliably be determined by counting, since not all of the sweets are visible in the
photograph. Some kind of estimate is therefore necessary. Similarly, in the third task,
the precise number of sweets cannot be determined by counting, since not all are
visible. However, the height of the sweets in the second tube, relative to the first,
may provoke an elementary form of proportional reasoning, namely doubling. The
interviewer sought to understand whether any such strategy and inference was a
factor by means of probes such as "How did you know that?".

RESPONSES AND CONTINGENT QUESTIONS

For all three tasks, each child was asked to say how many sweets there were
(respectively on the plate, in the picture, in the second tube). Two kinds of response
were categorised as 'Marked':

those responses which conveyed vagueness through specific linguistic hedges "I think there
are ten", "About ten", and so on:

statements of possibilities or conjectures, with modal auxiliaries:44. "it might he ten".

The label 'Marked' and derivative forms will consistently be highlighted in this paper
with a capital letter as a reminder of its current, if interim, technical meaning
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referring to the two itemised response-types. Hedges and modals will be described
jointly as Markers.

If one of these two kinds of Marker was spontaneously present in the initial response
of the child, the interviewer noted it and moved on to the next task (or concluded the
interview). Such a spontaneous hedge or modal was denoted a primary Marker. If, on
the other hand, the primary response was un-Marked (e.g. "There are nineteen" or
simply "nineteen"), the interviewer would ask a supplementary question, "Do you
think there are exactly nineteen (or Or . If this second question provoked a Marker
in the child's reply, then this secondary Marker was recorded. Thus, for each of the
three tasks, primary and secondary Markers were mutually exclusive.

DATA

Each interview either audio-taped or videotaped. The children's responses were
recorded on a proforma and entered onto a database. The software enabled the usual
data-interrogation methods. Some data relevant to this paper are displayed below.
The results on Marking are presented here in four age-bands, related to the first seven
'Years' (grades) of schooling in England and Wales:

Year R (reception): the first full year in the school, the oldest child being at most 5 years 9
months at the time of the interviews.

Years I and 2: 'Infants', aged between 5 years 9 months and 7 years 9 months.

Years 3 and 4: 'Lower Juniors', aged between 7 years 9 months and 9 years 9 months.

Years 5 and 6: 'Upper Juniors', aged between 9 years 9 months and I I years 9 months.

The numbers of children in these four bands was 45, 70, 65 and 50 respectively. The
numbers of children giving a Marked response to each question are presented below
as percentages of the number in each band, so that comparisons between the bands
may be made.

Task 1: Markers (% of Band) Task 2: Markers (% of Band) Task 3: Markers (% of Band)
Band

R

N..

45

Primary

9%

Secondary

2%

All

11%

Primary

9%

Secondary

2%

All

11%

Primary Secondary

7%

All

2% 9%

1 and 2 70 1% 6% 7% 1% 6% 7% 6% 6% 11%

3 and 4 65 2% 11% 12% 9% 18% 28% 26% 15% 42%

5 and 6 50 6% 20% 26% 28% 20% 48% 22% 36% 58%

Note that for each of the Tasks I to 3, primary (spontaneous) and secondary
(provoked) Markers are mutually exclusive.

OBSERVATIONS

I The cumulative Marked responses on Tasks I and 2 show a drop from the first band
(Y R) to the second (Y1-2) with consistent increases thereafter. This cumulative
decrease is the result of sharp decreases in primary Marking between those bands.
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2 With regard to secondary Marking only (Tasks I and 2), there is a consistent rise
from band to band over the whole age range.

3 On Task 3, the trend (minor inconsistencies apart) is of steady increase with age:

4 On the whole, there is a greater tendency towards secondary Markers rather than
primary in the last three bands (Y1 to Y6), but for the reverse in the youngest (Y R).

INTERPRETIVE FRAMEWORK
It is reasonable to suggest that, in a broad sense, the data obtained from the tasks and
interviews support the expectation that ability toll use linguistic Markers, and the
tendency to do so, develops with age at least over the years of primary schooling.

I propose a sociolinguistic developmental interpretative framework which would
account for the upward trend, and which might also accommodate the unanticipated
initial drops in primary Marking (from band R to band 1-2) noted above in
Observation 1.

I suggest that the modal and hedging linguistic behaviours of the children in each
band are related to three fundamental developmental dimensions.

The child's developing 'apprehension' of school of the roles of the players
(particularly teachers and their pupils) in the school situation, and the way that
they relate to each other in learning situations. Being aware of the role-
differences between home and school is part of what Berger and Luckmann
(1967) call 'secondary socialisation'.

The child's developing (confidence in his or her) ability to produce desired
behaviours within a variety of school practices. In particular, the child
progresses over the first few years of schooling from a position where counting
is a significant challenge to one where it is a routine if necessary chore.

The child's developing awareness of modal concepts and command of modal
language. Hypothetical reasoning is, in the classical Piagetian formulation of
cognitive development, a distinguishing hallmark of formal operational thinking.
The first epistemically modalised statements in pre-school children tend to occur
about six months later than deontic meanings, related to obligation and
permission (Stephany, p. 396), but are still extremely rare in comparison.

INTERPRETATION OF THE DATA
Against this background I propose the following developmental narrative, to account
for the trends in the data by reference to the interpretive framework above.

The account of changes in Marked language and performance in the primary years
(age four to eleven) is presented below in terms of three developmental phases,
which I have termed Initiation; Suspicion; Approximation and Protection. Each of
these phases will be briefly characterised, and illustrated by extracts from the 230
task-based interviews.
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YEAR R - INITIATION
The child's apprehension of school is relatively naive, and adult behaviour
questioning in particular - is taken at face value, without suspicion. Counting is a
relative novelty, and the child is aware that her performance is sometimes faulty; this
is hardly surprising, given the complexity of the process, as analysed by Gelman and
Gallistel (1978), Fuson (1988) and others. Whilst the task of enumerating 19 items
may be accessible to a Year R child, a teacher will alert the child even when the
count is substantially competent yet not entirely accurate; because accurate counting
is a major goal, a targeted skill, in this phase of schooling. Moreover, Gelman (1977)
suggests that only about one five-year-old in six can accurately enumerate a set of 19
items, given one minute to do so. The child (Year R) may well wish, therefore, to
acknowledge to the interviewer, (with a primary Marker) some doubt about the
answer s/he gives. The child's Marking can be understood as straightforward
cooperation, in effect observing Grice's maxim of Quality.

In each of the following transcript extracts, 'I' is the interviewer, 'C' the child.

Example 1: Boy aged 5:91M391

M39:1 I: Can you tell me how many sweets there are on the plate?

2 C: (counts aloud, points to each sweet in turn] One, two, three, four, five, six,

seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen,

seventeen, eighteen, nineteen, twenty, twenty-one, twenty-two, .. twenty-three.

.. twenty-four.

3 I: Twenty-four? Do you think there are exactly twenty-four?

4 C: Maybe not.

5 I: Why do you say that?

6 C: Because I might have counted two double.

This young b`y uses Marked nguage fluently. He receives the."How many?"
question as--atraightforward invitation to count. He has command of the stable -order
principle (Gelman and Gallistel, 1978, pp. 77-82) [M39:2], but applying the one-one
principle to a disordered set of this size presents difficulties for him. He does not
touch the sweets one by one, but points to them a partial internalisation (Fuson;
1988, pp. 85-6). His ability to partition the set (ibid.) into counted and td-be-counted
subsets is faulty and he knows it is sometimes faulty [6]. His attitude is something
like: "That's What I make it but I know from experience that I may haVe made an
error. That's simply the way things are when, like me, you're a novice at counting".

YEARS 1 AND 2 - SUSPICION
The child's apprehension of school includes the sense of being scrutinised by curious
adults, of the existence of 'testing' questions. S/he is now expected to enumerate
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small sets routinely. The result is a manifest reluctance to use primary Markers in
response to the first two tasks (perhaps because "he wants to know if I can get it
right"), but the interviewer's probe ("Exactly?") may release an acknowledgement of
uncertainty, using the same Plausibility Shields (predominantly 'I think' with a few
'maybe's) as the Year R child.

Example 2: Boy aged 7:5 [reference number 55]

The transcript is chosen for absence of Marked language.

M55:1 I: Can you tell me how many sweets there are on the plate?

2 C: [quickly, touching each sweet] One, two, three, four, five. six, seven, eight, nine,

ten, eleven, twelve, thirteen, .. oh, [restarts counting, now slower, placing

sweets on the table whilst counting] One, two, three, four, five, six, seven, eight,

nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen,

eighteen, nineteen.

. 3 I: And do you think there are exactly nineteen?

4 C: What?

5 I: Do you think there are exactly nineteen?

6 C: Er .. [pause, then recounts into hand] One, two, three, four, five ... One, two,

three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen,

fifteen, sixteen, seventeen, eighteen, nineteen.

7 So do you think there are exactly nineteen?

8 C: Yes.

His first recount [M55:2] is presumably a self-correction after he suspects that his
partitioning has gone wrong. There is no problem with the order of the tags, and the
count is in fact accurate. The interviewer's probe [3, 5] is immediately taken to be a
suggestion that he has mis-counted. Instead of hedging, he re-counts the set [6].

YEARS 3 TO 6 - APPROXIMATION AND PROTECTION

There is developmental continuity within this phase rather than qualitative change.
The account which will follow characterises a child who has moved some way along
that developmental continuum.

The child has a well-developed apprehension of her role in the practice of education.
S/he realises that teachers' including researchers' questions about mathematics are
usually not simple requests for information. On the other hand, the child is confident
in her ability to count. If such a child does in fact count the sweets in Task I, then a
primary Marker is unlikely. On the other hand, s/he may judge that the interviewer is
not interested in the precise number of sweets on the plate, and offer a primary
Marked estimate (there is a corresponding rise in the fourth band), or a response
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which is tagged (by intonation) with a question mark.

S/he recognises that some quantities are indeterminate; on Tasks 2 and 3 s/he will
realise, despite the awareness of 'testing', that the interviewer cannot expect her to
give precise answers to these "How many?" questions. If her first answer is un-
Marked, s/he will readily admit to uncertainty when asked if that answer is exact.
S/he may recognise the proportional reasoning Task 3 for what it is, and (correctly)
have some confidence that there are exactly 20 sweets in the second tube. S/he has
developed competence to deploy Approximators such as 'about' (as well as modal
auxiliaries) as epistemic markers, to introduce vagueness for protective purposes.

Example 3: Girl aged 10:6 [reference number 222]

M222 I: Can you tell me how many sweets there are on the plate?

9 C: [doesn't count, takes 2 seconds to reply] About twenty?

10 I: Now, can you tell me how many sweets there are in the glass?

11 C: [doesn't count, takes 1 second to reply] Ten.

12 I: And do you think there are exactly ten?

13 C: Nol [laughs] not exactly.

9 OK. Now, rve put ten sweets in this tube ... can you tell me how many sweets
there are in this tube?

10 C: [stares, compares tubes, takes 1 second to reply] Twenty.

11 I: And do you think there are exactly twenty?

12 C: About twenty-five ... or twenty.

13 I: And what makes you say that?

14 C: 'Coz it looks like half, twice as much as in there.

This pupil knows exactly when an estimate will suffice and, indeed, when nothing
else is possible. For Task 1, she instantly judges that an estimate will meet the
requirement of the Grice's maxim of Quantity. Her approximator "about" qualifies a
suitably round number [2] with the force of a root hedge (as if to say "This is as
much as you need to know"). She just laughs at the suggestion that her choice of ten
[4] should be taken to be anything other than an approximation. For Task 3, she is
explicit that proportional reasoning is the basis of her rounded estimate.

MODAL. AUXILIARIES

Initially, hedges were to have been the sole focus of study, but the epistemic
similarities between modals and hedges motivated the inclusion of modal auxiliaries.
The two classes of language clearly overlap in adverbial forms such as 'possibly',
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'maybe'. Only 19 children in the sample of 230 used modal language that was not
also recorded as a hedge. These 19 were predominantly in the third age-band (Year 3
and 4) and in nearly every case the modal verb used was 'might', as in "There might
be some more on the other side" (Year 3 boy, Task 2). See also [M39:6]. It is
interesting to note that, whereas occurrences of may and might were rare, in every
case they arose as secondary Markers, in response to the interviewer's prompt.

SUMMARY

I began this study with the expectation that the data would support a hypothesis that
the ability to use linguistic Markers, and the tendency to do so, increases consistently
through the primary years. These Markers (hedges and modal auxiliaries) serve
epistemic and root purposes (Coates, 1983, p. 18) conveying either the speaker's
uncertainty or their awareness that an estimate was appropriate (in fact, essential in
the case of the last two tasks). The interpretive framework offered here is an account
of some developmental aspects of conveying uncertainty in mathematics, including
social aspects which would account for a dip in unprompted Marked language shortly
after the child's initiation to schooling. Whilst it is clearly the case that the use of
Marked language has, in some sense, to be learned, it is not so clear how that
particular linguistic competence to convey propositional attitude is acquired. The
unexpected outcome of this particular study, in the context of estimation activity, is
that children may be socialised into suppressing this aspect of their linguistic
competence until they discover, or assert, that in some mathematics classrooms at
least it is alright to be wrong.
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THE TRANSFORMATION OF MATHEMATICAL OBJECTS IN THE DIDACTIC
SYSTEM: THE CASE OF THE NOTION OF FUNCTION

Luisa Ruiz Higueras. Departamento de Didactica de las Ciencias
Jose Luis Rodriguez Fernandez, Departamento de Didactica de las Ciencias

University of Jaen, SPAIN.

ABSTRACT:
This paper forms part of some research work (Ruiz-Higueras, I 994a) in which a
theoretical model for the notion of conception was developed, based on Vergnaud's idea
of concept (Vergnaud,I 991), which we applied to the characterization of conceptions
about the notion of function both on a psychological and an epistemological level. In the
experimental study presented here, we have attempted to demonstrate the gap which, all
too often, exists between formally introduced concepts, both by school text books and by
teachers in the classroom, and the knowledge effectively constructed by the pupils, as
well as some of the didactic factors and phenomena which condition this fact.

1.INTRODUCTION
This paper forms part of some research work (Ruiz-Higueras, I 994a) which studies

secondary school pupils' conceptions about the notion of function, using an epistemological and
didactic analysis thereof. In the aforesaid research work, a theoretical model for the notion of
conception was developed based on Vergnaud's idea of concept (Vergnaud,I 991).

An experimental study was carried out aimed at analyzing secondary school pupils'
conceptions on the function object using a sample group of secondary school pupils, completed
by a study of the institutional relationships that are maintained with this mathematical object,
taking as indicators official curricula, school text books and the notes taken by the pupils during
the classes.

In this paper, we present an analysis of the answers given by the pupils to one part of a
questionnaire which demonstrates the gap which, all too often, exists between formally
introduced concepts, both by school text books and by teachers in the classroom, and the
knowledge effectively constructed by the pupils, as well as some of the didactic factors and
phenomena which condition this fact.

2.METHOD
2.1. Characteristics of the sample: A sample was chosen including 323 pupils belonging to four
different secondary schools in the province of Jaen (Spain), three of which are located in the city
and the other is in the country. The teachers from these schools did not have any previous
experience of the questionnaire and the, pupils had not been prepared to answer the questions.
2.2. Data collection techniques: We may classify the method used for collecting data as one
involving the average (Dane, 1990). In our case, interest is centred on the personal relationship
that the pupil has regarding the notion of function and the data analyzed are his/her answers -

arguments, algebraic and graphical representations and procedures- to the items in the test. The
technique for collecting data was a survey, the data were collected personally by the researcher,
using a process of mixed interaction.
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Table 1

BREAKDOWN Of THE PUPILS IN THE SAMPLE

COURSE N° of pupils Percentage

2nd year BUP (16 years old) 139 43.0

3rd year BUP (17 years old) 86 26.6

COU (18 years old) 98 30.3

Total 323 100

2.3. Process for constructing the questionnaire: The following phases were involved in the
construction of the instrument:
1) Initial compilation of possible items to include in the test.

These items were taken from other research papers such as those by Vinner & Dreyfus
(1989), Vinner (1983) and Tall & Bakar (1992), as well as exercises and problems included in
text books from different study courses and didactic proposals drawn up by different bodies.
2) Selection of items to form the two pilot tests.

We took into account their greater or lesser suitability to the three components that we
wanted to determine in the makeup of the subject's conceptions:

- invariants that the subject.might attribute as essential notes that determine the function
object;
- representations of this object;
- situations of variation in which the subject might (or might not) deem it appropriate to
use the function object as a modelling tool.

3) Preparation and analysis of the items selected and their study by experts in this field.
4) Application of the test to a pilot sample and possible modifications.
5) Construction and application of the final test.

This involved a questionnaire made up by 6 items, including a total of 25 questions
(Ruiz-l-ligueras, I 994a). During its preparation we opted for open questions instead of multiple
choice type questions. We wanted to study the full range of possible lines of argument that the
pupils were able to express when justifying their answers. This lines ofargument would then
allow us to deduce their conceptions about the notion of function. We should point out that we
are mainly interested in highlighting the pupils' conceptions and not assessing their academic
achievement.
2.4. Questions that we analyze in this paper: We presented the results of the analysis of the
answers given by the secondary school pupils to one part of the previous questionnaire which
includes the following questions:

If you had to explain to a pupil in the first year of the "1311P"course (15 years of age)
what a mathematical function is, what would you say to him?
Would you show him some examples? Which ones?
Would you give him an exercise or a problem for him to solve? Describe one.

We focused these questions so that the pupils, in their answers, would attempt to give an
explanation of the notion to their school pals in lower years. By this we intended the pupils to
try to use all the resources that might be needed to explain sufficiently what they und-nstand by
mathematical function.

:2
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We were interested in studying the definitions that the pupils made up for the concept of
function, analyzing, in detail, the mathematical elements that they included in their definitions.
We observed the declaratory aspect covered by these definitions, since through them we were
shown a very significant part of their personal relationship with the notion of function; the
invariants that they associated with it in their decision, the representations that they used and the
tasks for which they though it appropriate to use functions.

Furthermore, we analyzed whether they include terms such as:
-Application, correspondence, association;
-Transformation, dependence.
These sections have been included because we consider that they involve key terms for

determining what is the notion of function. Application, correspondence, and association indicate
in some way an assignation between objects, whereas transformation and dependence describe
to us the effects of the variation (governed by laws or criteria) between changing objects: We
may only perceive that one thing depends on another, with each one of them changing in order
to verify what has been the effect of the variation and, therefore, of the transformation.
Furthermore, we shall take into account the records (numerical, graphic or algebraic) that they
include in their definitions.

We were also interested in knowing which tasks they proposed as exercises, as well as
the functions that they selected for carrying out these exercises. This, together with the detailed
study of the notes taken down by the pupils in the classes, allowed us to deduce some
characteristics of the didactic contract (Brousseau, 1986) existing between the teacher and the
pupils. We also compared the examples presented by the pupils with the definitions that they
expressed for notion. The former would correspond to prototypes of the conceptual image
(Vinner & Tall, 1981), whereas the latter would be an explicit statement of their definition of the
concept. We tried to see whether or not there was any consistency between these two aspects, or
whether the phenomenon of compartmentalization has occurred (V inner & Dreyfus, 1989).

3. ANALYSIS OF THE RESULTS
Once the categories for analysis had been established, we proceeded to encode the data

and record it in order to carry out a statistical analysis, using the SPSS and BMDP software
packages.

Since the research is of a qualitative type, no marks were awarded to the different types
of answers and neither did we add up the number of correct solutions for each pupil. On the
contrary, we were interested in analyzing each one of the dependent variables separately as
identified in the analysis of the questionnaire. For this reason, the statistical analysis was
restricted to preparing comparative tables for each variable with respect to the academic year and
the analysis of correspondences and cluster analysis for the joint study of the items that refer lo
the recognition of functions (Ruiz-Higueras, 1994b).

Table 2 shows the frequency and the percentage, with respect to the total number of
pupils in each year and in the whole sample, with which different terms appear in the definitions
proposed by the pupils for the notion of function. We should point out that the terms that appear
in the Table are not mutually exclusive, since in almost all the definitions, the pupils include
elements from more than one heading. For example, let's have a look at the following definition:

A mathematical function is an equation that we may represent graphically using
curves and, by means of this representation we may study all of its
characteristics. (3rd year of BUP, 17 years old).

In this definition, the pupil used terms from the algebraic register -"an equation" and from tt e
graphic register -"graphically represent " -.
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After analyzing all the protocols, we observed that not one pupil managed to formulate the
definition of function accurately. Even those who used the terms application or correspondence
did not mention the existence of the domain or the image set, nor the need for uniqueness for the
image elements. In general, the personal definition of these pupils differs from the formal
definition that appears in their text books.

As Table 2 shows, the highest percentages correspond to definitions that include elements
of the algebraic register (60.4%) and numerical register (37.2%). For the vast majority, function
is an operation between numbers. Their definitions are really a "story" about the actions that they
normally carry out for solving their exercises in class.

36.2% refer to graphical representation in their definitions. By analyzing their definitions
we observed that they always include the graph as the end of an algorithm process. So, for
example:

A function is a mathematical operation that consists of an equation in which the
valUes are successively replaced in order to obtain a result on a table. We may
represent this table graphically, thereby obtained a graph. (COU- 18 years of
age).

We may observe how in these kinds of definitions, the pupils did not consider the graph
of a function to be the representation of the relationship that exists between the variables, nor did
they analyze its characteristics. That is to say, they did not point out the display potential that the
graph has for representing the overall properties of the function.

Table 2

FREQUENCY AND PERCENTAGE WITH WHICH DIFFERENT TERMS APPEAR IN THE DEFINITIONS
PROPOSED BY PUPILS FOR THE NOTION OF FUNTION

Course years Total

Mathematical terms 2nd of BUP
(16 years old)

3rd of BUP
(17 years old)

COU
(18 years old)

Numerical 55 28 37 120
39.6 32.6 37.8 37.2

Algebraic 75 52 68 195
54.0 60.5 69.4 60.4

Graphics 43 35 39 117
30.9 40.7 39.8 36.2

Application 27 3 14 44
19.4 3.5 14.3 13.6

Transformation 7 0 6 13

5.0 0.0 6.1 4.0

The terms application, correspondence or association were used by only 13.6% of the
pupils. Nevertheless, both in their textbooks and in their class notes, the definition of function
that appears is fully labelled as an application between two subsets of R. In order to back up this
definition, both the teachers and the school text books adopt an intuitive option based on Venn
diagrams. This device allows them to locate the notion of function in continuity with previous
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notions already learnt by the pupils, such as correspondences. Nevertheless, this device often
leads them towards an excessively trivial didactic treatment of this mathematical object. The
pupils also used diagrams in an attempt to support their definition with an "ostensive" foundation
which provides them with security. In these representations they establish correspondences
exclusively between natural numbers. The saving offered by natural numbers in the numerical
calculation makes it possible that they may in fact constitute an obstacle for finding out about
real variable functions (whose domains are subsets of R); since most of the pupils considered
them to be the only possible numerical domain, thereby restricting the notion of function
exclusively to that of succession.

Just 4% of the pupils considered a function as a transformations o a change between
variables. When a function is considered as a variable. the nature of the change is accepted. The
concept of variable is precisely that capacity in the mind to characterize this change. It is obvious
that, for our sample of pupils, the presence of unknown or non-determined quantities is much
stronger than that of variables quantities. This is the result of the fact that their experience with
functions has led them generally to solve equations and inequalities (more than 45% of the
exercises that appear in their text books and in their class notes asked them to determine the
domain of a function) and not to work with activities in which they had to manipulate the notion
of variables.

In Table 3 we can see the frequency and the percentages with respect to the total of the
pupils from each year and in the whole sample, of the examples of functions proposed by the
pupils. The highest percentage, 44.9%, corresponds to examples of similar functions, followed
by square functions, 23.2%. We may say that, by showing these examples, the argument used
by the pupils in their definitions finds full security (A function is y = x -3x + 2): Definitions find
the security needed in what is ostensive. (Pascal, 1980, p.102).

We should point out that in no case did the pupils determine either the initial set or the
final set amongst the ones established by the function that they had proposed as an example,
neither did they state its domain. So amongst our pupils we may highlight a strong presence of
laws or criteria that govern the behaviour of the function (how it varies) whereas the variable
elements (what varies) have passed by unnoticed. We must admit that, in general, the pupils
presented examples which contained irrelevant properties that are not required by the formal
definition of the concept. Therefore there was an inconsistency (according to Vinner's meaning
of the word, 1990) between the examples proposed and the mathematical definition of the
function object, and, in some cases, inconsistencies were also presented amongst the examples
and their own definitions.

To the question: Would you give him an exercise or a problem for him to solve? Describe
one. 210 pupils answered yes (65% of the total). Of them, 70% proposed the task of representing
functions graphically, mainly similar functions (in these we include linear functions) and square
ones. Two of them asked the subject to represent functions that were enormously complex,such
as A) - 2x , this is due to the transparency with which graphic representations of
functions are presented, both by the text books and by the teachers in the classroom. It is reduce
to a mere algorithm: we give values to the independent variable, we obtain pairs, we place them
on Cartesian axes and we immediately join them together to obtain the graph of the function.
This leads the pupils to construct knowledge that is too localized, which may be correct within
certain limits, but generally the pupils know nothing about the existence of these limits.
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Table 3
FREQUENCY AND PERCENTAGE OF PUPILS ACCORDING TO THE TYPES OF FUNCTIONS

THAT THEY PROPOSE AS EXAMPLES

Courses Total

Types of functions 2nd BUP
(16 years old)

3° BUP
(17 years old)

COU
(18 years
old)

No example 16 26 14 56
11.5 30.2 14.3 17.3

Similar 70 29 46 145
50.3 33.7 46.9 44.9

Square 30 18 27 75
21.6 20.9 27.6 23.2

Rational 7 11 4 22
5.7 12.8 4.1 6.8

In parts 8 1 2 11

5.0 1.2 2.0 3.4

Irrational 0 0 1 1

0.0 0.0 1.0 0.3

Trascendent 2 1 1 4
1.4 1.2 1.0 1.2

Situation of 6 0 3 9
contextualized
variabilty

4.3 0.0 3.1 2.8

Total of pupils 139 86 98 323
43.0 26.6 30.3 100.0

We should point out that only one pupil (0.5%) proposed an exercise including finding
the domain of a function. Here we noticed a great abyss between the activities covered in the
classroom, where many calculations are made for the domains of functions (45% of the exercises
carried out in the class) and the fact that only one pupil suggested this task. We believe that the
phenomenon of rigorous training in algorithms that accompanies, in the present education
system, the task of "finding domains" ensures that it is precisely the understanding of the
algorithm which replaces the understanding of the meaning of this task: Why and for what
purpose is it necessary to determine the domain of a function?

4. CONCLUSIONS
On the basis of everything said earlier, we may now state that, effectively, our pupils

manipulate in their definitions terms from three different registers: numerical, algebraic and
graphic. If we use Sfard's terminology (1989), we shall say that the pupils develop an operational
definition -they conceive the function as a certain procedure for calculus-, which is almost
synonymous for algorithm. Freudhental (1983) uses an analogous expression to tell us that it
involves operational definitions, since they only describe the uses that the pupils have recently
made of the concepts. According to Salin and Mercier (1988), they would be constructive
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definitions, since they relate the actions that they carry out to construct what for them would be
the function object. In this sense, Vinner and Dreyfus state that pupils pay very little attention
to the conceptual aspects of a given notion, whereas they pay much more attention to their
computational and operational aspects (Vinner & Dreyfus, 1989, p.364). Thus, even though the
presentation of the notion of function, both in the text books and by the teachers in their classes,
is done in its most general and updated way, nonetheless the pupils find and define it only within
the limits of the uses they put it to. In this sense, Leonard & Sakur (1990), p.217) assert that the
pupils attempt, in their answers, to reuse the organizations constructed in the class, therefore
they contain part of the correct knowledge though very limited by the restrictions inculcated in
the educational system. The locality of knowledge is therefore an effect of the didactic
transposition (Chevallard, 1991) carried out in the classroom: the efficiency to which the pupils
are subjected by the restrictions of the educational system as regards their assessment, results in
their answers being adapted exclusively to the hierarchy and organization established by the
didactic contract in classroom activities. In this sense, we consider that it is very significant that
only 4% of the pupils considered a function to be a transformation or a change between
variables. The phenomena subjected to the change and the cause-effect relationships between
variable magnitudes, which were the starting point for the notion of function, are now absent
from our classrooms; as a result, the presence of unknown or non-determined quantities is much
stronger than that of variables quantities for our set of pupils. We may say that their teaching has
misshapen the function object by adapting it so forcefully to their didactic needs, breaking,
espistemologically speaking, off from the problems and contexts to which this notion had been
linked since its creation. This is a process of "descontextualization" followed by a process of
"recontextualization" within the teaching system.

Based on our analysis of the notes taken in the class by the pupils and after studying the
text books, we may state that the presentation made of the notion of function which is as general
as possible, contrasts with the limitations of the field from which they select the exercises that
hey offer to the pupils. The restriction of the possibility of assessment to which all knowledge
& teaching is subjected results in our teaching system being inflated with exercises involving
repetitive applications of algorithmic procedures which are easy to assess: calculus of domains
of functions, configurations of value tables, representation of graphs, etc. These tasks conceal
all the meaning that the notion of function has regarding the dependency between variables,
variability and change, since the algorithmic reduction of mathematical notions has contributed
to the blurring of the problem as a power for generating knowledge amongst the pupils and,
consequently, has contributed to a loss of the epistemological meaning of these notions: There
is a belief (amongst teachers) that knowledge may be taught but that it is up to the pupil to
squeeze out the meaning. (Brousseau, 1987, p.48).

Bearing in mind the set of invariants that the pupils attributed to the function object In
their descriptions, which constitute local aspects of their conceptions referring to the intensive
component of the concept, we may identify the following typical statements:

- A function is a certain procedure for algorithmic calculus between numbers
- Only relationships that may be described using formulae may be called functions
- There is no kind of discrimination between the notion of function and the analytical
tools that are sometimes used to describe its law. So the laws and criteria by themselves
are considered to be functions, independently of the objects on which they act (initial set,
final set, domain)
- Every function may be represented on a Cartesian graph using a curve.
We may state that, in the configuration of these invariants, the working of the present

teaching system has a great weight to bear, based to a large extent on the algebraic chart. The
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restrictions on which this working is supported have been found to be:
-on the epistemological plane: due to the prolonged domination of algebra in the
historical development of the notion of function;
-on the didactic plane: due to the strength found by algebra in its refuge in algorithms,
strengthened by the restrictions linked to academic assessment (economy of the didactic
system).
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THE USE OF ILLUSTRATIONS IN MATHEMATICS TEXTBOOKS

Dora Santos-Bernard

Shell Centre For Mathematical Education, United Kingdom

Abstract
This is part of a research study on the use of illustrations in Mathematics textbooks.
Two types of representational illustrations were found to be used in arithmetic
problems: relevant and cosmetic. An experimental design with matched groups and
using worksheets with different types of illustrations was carried out, collecting the
data by individual interviews. It was Plaid that some students considered cosmetic
illustrations as relevant and some considered relevant illustrations as merely
cosmetic. These findings depended on pupils' mathematical achievement level, the
structure of the arithmetic questions, and previous experience in the use of textbooks.

If you look through a current primary Mathematics textbook you can see
illustrations everywhere, at least one drawing on every page. Furthermore, if we look
at the role each illustration plays in the textbook lesson we can see that it varies from
illustration to illustration. So, what is the purpose of including so many illustrations?
Evans, Watson and Willows (1987) interviewed representatives of nine major
publishing houses in Canada in order to answer the question: Why illustrate
textbooks? The main findings were that illustrations were meant to a) dress up the
books, b) assist the author to 'spin the magic', c) provide resting points and d)
support the text. The designer and editor decided the rhythm, size, place and design
of illustrations. Authors said roughly what the illustrations should contain. Authors
and illustrators rarely met. Decisions made by editors, publishers and designers were
not supported by educational research. Textbook guides emphasise that illustrations
are a tool for 'motivation', and there is no mention in regard to the effects
illustrations might have in helping or hindering children's understanding.

The use of textbooks is a polemical issue, nevertheless the textbook is one of the
teacher's major resources in the classroom (Robitaille and Garden (eds), 1989).

Textbooks have illustrations, and illustrations might have an effect on children's
Understanding and approach to the material presented. Only one of several questions
that this research is addressing will be discussed in this paper: how do children use
the illustrations presented in their textbooks, specifically in arithmetic problems. The
illustrations to be studied are representational, that is drawings and pictures of
different scenes that present the context of the problem.

Experimental research done on how children use illustrations in mathematics
textbooks is scarce. Poage and Poage (1977) showed that first grade elementary
school children make a different interpretation of illustrations than adults. Campbell
(1981) suggested that generally children obtain less information from pictures than
adults, basing her research on illustrations which showed motion in order to convey
the concepts of addition and subtraction. One of her conclusions was that
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"illustrations may help children understand the concepts of addition and subtraction,
but only if the children understand the picture" (p.16), but the question is what is
"understanding". Ohlson (1986) analyses and challenges the notion that "illustrations
are intended to increase the understanding of arithmetic" (p. 3). She proposes that the
function of illustrations is as "objects" in which the child can apply his arithmetic.

Botsmanova (1972) compared the effectiveness of three different forms of
illustrations used in problem solving: object-illustrative pictures (which show the
objects mentioned in the problem), object-analytical pictures (which illustrate only
the essential data) and abstract spatial diagrams. Students from elementary school
grades I to 4, after solving the problems given to them, were asked to reproduce the
illustration. It was assumed that if they could reproduce the illustration after arriving
at the solution it meant that the illustration played a definitive role in the problem
solving. The object-analytical pictures were reproduced more than the object-
illustrative. In another phase of the study with students grades 2 to 4, it was assumed
that the time spent solving the problem was related to whether some form of picture
was used. Most children in their first approach to the problem did not refer to the
illustrations. When re-examining the problem they ignored the illustrative picture but
they did come back to the object-analytical ones. These two assumptions underlie
this research.

In order to know how children use illustrations in arithmetic problems, for this
research a classification of illustrations in such problems was formulated, based on
previous classifications made in the area of Science and Reading (Reid, 1990a; Levie
& Lentz, 1982) in Mathematics (Botsmanova, 1972; Shuard & Rothery, 1988) and in
the area of perception (Goldsmith, 1984; Evans et al., 1987). Considering the
relationship between the text and the illustration, illustrations were classified into two
groups: relevant illustrations and cosmetic illustrations.

The relevant illustrations are defined as those which can be used as a source of
information in order to answer the arithmetic problem. A relevant illustration can a)
be the only source of information, b) present the same information given in the text,
or c) have only partial information. The cosmetic illustrations are defined as those
with no information necessary for answering the arithmetic problems. The cosmetic
illustrations can a) have motivational purposes, or b) portray the context used in the
problem.

The aims of this research are to answer the following questions: a) How do
children use an illustration that is part of an arithmetic problem?; b) Can illustrations
be a cognitive obstacle for children's understanding of an arithmetic problem; c) Can
illustrations have a dominant role in preventing students from relating the illustration
to the text?; d) From which source do children extract the information to answer an
arithmetic problem?; e) Is the way in which the student uses the illustration related
to his mathematical achievement level?; f) Is the way in which students use the
illustrations related to specific arithmetic questions?
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Sample: Seventy eight Mexican children in second grade of elementary school (8 9

years old) were selected for the sample. Because the method of obtaining data was
through interviews and thus time consuming, children were selected from the same
school. They were allocated in three matched groups. The variables considered for
the matching system were: mathematics achievement level (scores given from a
school standardised test), reading score (given by the teacher), age, gender and
teacher, The groups were labelled: group one, group two and group three.

Material used: Three arithmetic problems were selected from current English and
Mexican mathematics textbook lessons. Each problem was adapted in order to create
three different versions: v1, v2 and v3 The difference among versions was the type
of illustration used. For example, in the textbook lesson The school bus" the
problem was to find out how many students could go to the zoo in a bus with eleven
double seats. In v I a cosmetic illustration showing a monkey was used (fig I ).

Version two of the same lesson had a cosmetic illustration showing students getting
in a bus (fig 2).. Version three showed one part of a bus with double seats and some
children in it. The illustration gave partial information, which exemplified the
arrangement of the seats inside the bus (fig 3).

Another example is the textbook lesson "The farm". Version one was the original
textbook lesson, for which both the illustration and the text were necessary (fig 4).
Version two had all the information in the text and the illustration was cosmetic (see
fig 5). Version three had the information in the text and in the illustration. It was
possible to answer the arihtmetic question only with the text (fig 6).

Design: In total there were nine worksheets, three of each arithmetic problem, and
each written in three different ways. Each group was given one worksheet of each
topic. For example, group one was given the "The farm" worksheet v 1, group two
was given the same worksheet but v2, and group three was given v3.

Each child was interviewed individually. He was given the three different
worksheets, one at a time. Interviews were used to discover how an individual child
on the day of the interview, would use spontaneously the illustrations to answer the
arithmetic questions. Also the student was asked to invent another question for each
worksheet. In the same manner, he was questioned in order to find out the source of
information needed to answer his question. The interviews were audio recorded

Coding system: In order to analyse the data from the transcriptions of the interviews,
coding systems were generated. In this paper, only the coding system used to
analyse from where the children extracted information will be presented. The
sources of information that can be used are: the illustration only; the text only; both
the text and the illustration; or previous expei-ience regardless of the problem data. A
detailed explanation follows:

Code I. Assigned to an answer when the child extracts information only from a
relevant illustration. It can be said that this is what he is 'expected' to do.
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Code 2a. Assigned to an answer when the child tries to use a cosmetic illustratiOn in
order to obtain information.
Code 2b. Assigned to an answer when the students uses a relevant illustration but
not as 'expected' to be used (i.e. in an Incorrect' way).
Code 3. Assigned to an answer when the student extracts the information from the
text which is the source of information.
Code 4. Assigned to an answer when the child uses the information given in the text,
when it was necessary to use the information in the illustration as well.
Code 5. Assigned to an answer when the student uses only pan of the information
given in the text.
Code 6. Assigned to an answer when the child uses the information in the text as
well as the information in the cosmetic illustration.
Code 7. Assigned to an answer when the child uses the information in the text as
well as in the relevant illustration.
Code 8. Assigned to an answer when the student's answer is based on his
imagination or previous knowledge which does not depend on the information given.

Data analysis: Each question was analysed considering the sources of information
used, the reasons given, the worksheet version and the relation it had to the
mathematics achievement level of the student. Each group was analysed individually
and in relation to the others. In this way patterns can be found for when and why
children consider a cosmetic illustration as relevant, read a relevant illustration
differently from that expected, or disregard a relevant illustration.

Extracts from interviews: A student with a medium mathematics achievement level,
gave the following answers to questions of "The farm" vl (fig 4). These were coded
2b because he used only the information of illustration but not as expected. (S-student,
I-interviewer)

S: "Inside the byre there are 16 cows. How many cows in total?" Seven.
I: How come?
S: There are only seven, these six (pointing at the illustration) and the one that is
inside here, you can see her face (inside the byre).
I: But here it says (pointing at the text) inside there are 16.
S: Its a trap, some books are like that!
S: (question 4) "Inside the hen-house there are 6 white chickens and 10 black
chickens. How many chickens are there inside the hen-house?" Zero, because you
can't see how many there are inside the hen-house.

Another student, with a medium mathematics achievement level, gave the following
answer to question six of "The farm" v3 (see fig 6). This question was coded '8'
because his answer was based on his ideas about farms.

S: "How many animals are there in total on the farm?" From all they have told me?
(Counts the animals on the illustration) Sixty.
I: You counted sixty?
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S: No, it's that they are very few so I thought there have to be more animals in the
farms. Farms have a lot of animals.

Some Results: The results that are shown in this paper will describe some of the
reasons students gave for the use of illustrations on "The farm" and "The school bus"
questions. Other variables will not be discussed.

Table one shows the number of students that used or did not use the illustration in
questions one, two and five of "The farm". For example, in v 1 students were
expected to use the illustration. In question one only 14 students did so, and 12
students did not. The main reason given for not using the illustration was that the
question had only one number (16) which made the question a statement. They
thought the illustration was merely cosmetic. When asked why they used the
illustration for the other questions, their reasoning was that each question was
independent and had nothing to do with the others. Table two shows that from the 14
students that used the illustration, only half of them used it as expected. The students
that did not use the illustration as expected explained that the only existing cows
were the ones that could be seen and the ones inside the byre were not to be
considered because they could not be seen. The same argument was given for
question five.

The children that used the illustrations in v2 and v3 in order to obtain information,
explained that because there was only one number (12) it could not be a question. In
consequence they referred to the illustration. They did not refer to the illustration in
question one because this had two numbers that they could operate on. The same
reasoning was used by 13 students with v3 when not using the illustration.

number of students
version

Used the illustration
QI Q2 Q5

Did not use the illustration
QI Q2 Q5

I. necessary illustration 14 of 26 22 of 26 18 of 26 12 of 26 4 of 26 8 of 26

2. cosmetic illustration. I of 26 8 of 26 0 of 26 25 of 26 18 of 26 26 of 26

3. optional illustration 2 of 26 8 of 26 0 of 26 24 of 26 18 of 26 26 of 26

Table I. Source of information used in "The farm" worksheet questions I, 2 and 5

number of students
version

As 'expected'

QI Q2 Q5

Not as 'expected'

QI Q2 Q5

I. necessary illustration 7 0114 17 of 22 11 of 18 7 of 14 5 of 22 7 of 18

3. optional illustration I of 2 4 of 8 I of 2 4 of 8

Table 2. How students used the illustrations in "The farm" worksheet questions I, 2 and 5

Table three shows the number of students that used or did not use the illustration on
"The school bus" worksheets. In vl and v2 children were not expected to use the
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illustration to obtain information. Nevertheless almost half of the students with v2
did use the illustration. When asked about the lack of congruence between their
answer and what the text said, the majority argued that the text had nothing to do
with the questions because it was very clear how many children were getting inside
the bus. In v3, from the 19 students that used the illustration in question one only
three of them used it as 'expected'. It is noticeable that students did not use the
illustration for question two. Their reasoning was that the bus shown in the
illustration was for question one. The bus for question two could not be that one
because it had to have eleven double seats. When questioned why the first bus did
not have eleven double seats, the majority argued that the text could not be used in
question one because even if the picture of the bus was not complete (the bus driver
and the door were missing) it did had double seats. Few students changed their
answer for question one after the discussion.

number of students

version

Used the
illustration

QI Q2

Did not use the
illustration

Q1 Q2

Used their
imagination

QI Q2
I. cosmetic-monkey 0 of 26 0 of 26 22 of 26 22 of 26 4 of 26 4 of 26
2. cosmetic-children 12 of 26 10 of 26 13 of 26 14 of 26 1 of 26 2 of 26
3. partial illus-bus 19 of 26 I of 26 4 of 26 22 of 26 3 of 26 3 of 26
Table 3. Source of information used in 'The school bus" worksheet.

Discussion: Students do not necessarily use the illustrations in the worksheets as
'expected'. Several aspects can influence this: a) The decision whether to use an
illustration that is part of an arithmetic problem can depend upon the syntax of the
arithmetic question being asked, i.e. if the question deals only with one number. b)
Some illustrations can have such a powerful effect on the student, that he can
disregard the information given in the text in order to answer the arithmetic
questions. This dominant effect the illustration has could lead to cognitive obstacles.
c) In the same worksheet, students might use the illustration or not depending on the
question, thus considering the illustration sometimes relevant and some times
cosmetic.

Illustrations might be misleading for some students. Teachers should be aware
of this. Authors should be conscious that an illustration might not be read by all
students as he might expect them to do. Mathematics educators should be aware of a
lack of research done in this topic, and its importance in various areas: textbooks use
and design, cognitive obstacles illustrations might create, implications of using
illustrations merely as motivational tools. Finally it should not be taken for granted
that children read and use illustrations as they are expected to do by teachers and
textbook authors.
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Reduced Sat Ties of Worksheets

The children at Central City School are
going on a day trip to Puebla's Zoo. The
school bus has eleven double seats.

1. How many students can Miss Paty take to
Puebla's Zoo?
2. The headmaster of the school got another
school bus of the same type. How many
children can now go to Puebla's Zoo?
Figure 1. Version one of the worksheet "The
school bus". Cosmetic illustration

The children at Central City School are
going on a day trip to Puebla's Zoo. The
school bus has eleven double seats.

I. How many students can Miss Paty take to
Puebla's Zoo?
2. The headmaster of the school got another
school bus of the same type. How many
children can now go to Puebla's Zoo?
Figure 3. Version three of the worksheet
"The school bus". Illustration with partial
information

The children at Central City School are
going on a day trip to Puebla's Zoo. The
school bus has eleven double seats.
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I. How many students can Miss Paty take to
Puebla's Zoo?
2. The headmaster of the school got another
school bus of the same type. How many
children can now o to Puebla's Zoo?
Figure 2. Version two of the worksheet "The
school bus". Cosmetic illustration

Paco's Uncle has many animals on his farm.
Ana prefers the rabbits; Paco likes the
chickens.

07er
..77) Sa

I. Inside the byreTITeteTire 1 61ms.
Outside there are six, how many cows in
total?
2. There are 12 rabbits. All of them are
outside. Flow many rabbits on the farm?
3. There are 5 white chickens and 9 black
chickens outside the hen-house. How many
chickens are there outside the hen-house?
4. Inside the hen-house there are 6 white
chickens and 10 black chickens. How many
chickens in total are there inside the hen-
house?
5. Inside the hen-house there are 6 white
chickens. Outside the hen-house there are
five white chickens. How many white
chickens in total?
6. How many animals are there in total on
the farm?
Figure 4. Version one of "The Farm".
Relevant illustration.
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Paco's Uncle has many animals on his farm.
Ana prefers the rabbits; Paco likes the
chickens.

411E . cc- -

. Inside the byre there are 16 cows.
Outside there are six, how many cows in
total?
2. There are 12 rabbits. All of them are
outside. How many rabbits on the farm?
3. There are 5 white chickens and 9 black
chickens outside the hen-house. How many
chickens are there outside the hen-house?
4. Inside the hen-house there are 6 white
chickens and 10 black chickens. How many
chickens in total are there inside the hen-
house?
5. Inside the hen-house there are 6 white
chickens. Outside the hen-house there are
five white chickens. How many white
chickens in total?
6. How many animals are there in total on
the farm?
Figure 5. Version two of "The Farm".
Cosmetic illustration.

Paco's Uncle has many animals on his farm.
Ana prefers the rabbits; Paco likes the
chickens.

I. Inside the byre there are 16 cows. How
many cows in total?
2. All the rabbits are outside. How many
rabbits on the farm?
3. How many white chickens outside the
hen-house?

How many black chickens outside the
hen-house?

How many chickens in total are there
outside the hen-house?
4. Inside the hen-house there are 6 white
chickens and 10 black chickens. How many
chickens are there inside the hen-house?
5. Inside the hen-house there are 6 white
chickens. How many white chickens in total?
6. How many animals are there in total on
the farm?
Figure 6. Version three of "The Farm".
Relevant illustration-optional use.
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EFFECTS OF COMPUTERIZED TOOLS
ON PROTOTYPES OF THE FUNCTION CONCEPT

Baruch B. Schwarz, The Hebrew University

Rina Hershkowitz, The Weizmann Institute

It has been shown in several studies that linear functions are prototypes of functions. In

the present research, two groups that underwent different rich educational programs on

functions are contrasted on prototypical knowledge that developed. The first group

(GI) underwent a rich curriculum, but tools and activities were quite "ordinary". The

second group (G2)followed a curriculum based on computerized tools and open-ended

activities. It is shown that, while G2 students often prefer to use linear functions to

exemplify properties or to solve problems when it is possible, other functions are

invoked, when they are needed: quadratic, power, piece-wise linear, or atypical

functions. Families of functions are also often used. In contrast, GI students used

extensively linear functions (even when their use led to aberrations), referred almost

exclusively to atypical functions whenever richness of the concept needed to be

expressed, and used less examples than G2. Moreover, the justifications given by GI

students were less articulated and principled than those of G2 students.

PROTOTYPES .AND CONCEPT LEARNING
Prototypical examples are important for the development of concepts. For

example, properties of fruits are better learned through the prototype "apple",
than through olives. However, as has been shown in geometry, if prototypes
are persistently too dominant, they impede learning, because they are used as
frame of reference in the judgment of other examples. In this case, the
attributes of the prototypes are imposed on other examples of the concept
(Hershkowitz, 1989).

The concept of function uncovers a similar phenomenon. Karplus (1979)
showed that most high school students use linear inter/extrapolations to find
values of functions whose graph passes through two given points. Karplus used

Item 13 in the appendix (what he called the "bacteria puzzle") to show this

result. With Item 13c where the linear extrapolation leads to an aberration (a
negative number of bacteria), Karplus showed that a non-negligible part of
high-school students were still linear. Markovitz, Eylon, & Bruckheimer
(1986) asked some of Karplus' items, and added formal items to find that many
Grade 9 students declared that the linear function only passes through two
given points. Similarly, a significant part of the students thought that no graph
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can pass through three non-collinear points. Therefore, these studies show the
prevalence of the linear function as an almost exclusive prototypical example.

TWO CURRICULA FOR FOSTERING THE FUNCTION CONCEPT
Many new curricula were implemented to foster the concept of function. They
are often sensible to the fact that students need to be exposed to many
examples, and families of functions. There is a pedagogical belief that
computers can help in this endeavor. Experimental studies showed that this
belief has psychological roots (Schwarz & Dreyfus, 1995).

Two curricula on functions were recently developed and implemented in
Israel by the Weizmann Institute. Both are based on the same syllabus, and
consist of a one year long course for Grade 9. The first curriculum that was
developed about 7 years ago, is traditional in the sense that (a) subconcepts,
representations, and procedures are presented and trained in a linear way, the
formal definition of function and its subconcepts being introduced quite early;
(b) students are encouraged to work in an exploration mode, but their
exploration is coached by. the textbook and/or the teacher, the main goals being
hidden from the learner.

The second curriculum that was developed in the last 3 years, is based on
(a) team work on open-ended problems, the majority of which being problem-
situations; (b) the extensive use of technological tools; (c) a "concurrent"
teaching approach (as opposed to the linear way above), subconcepts and
procedures being reinvented by the problem solver on the basis of intuitive
knowledge (d) fostering mathematical written and oral discourse. It is

important to note that the computerized environment did not function as a tool
only but as a facilitator of mathematical activities such as modeling (see for
example Hershkowitz & Schwarz, 1995).

The two curricula presented students to items similar to II and 13. These
items were given to exemplify the richness of the concept of function before
students systematically studied linear, quadratic or other functions.

The present study compares between two groups of students (G I and
G2) who followed the two curricula.. Wny differences can be found between
them: different teachers, tools, kinds of interaction, and activities. However,
far from evaluating the curricula, the results are analyzed to differentiate
prototypical knowledge from a rich representation of the function concept.

An important theoretical reminder relating to the learning of the concept
of function with computerized environments will be useful for the following.
In a previous study, Schwarz and Dreyfus (1995) showed that two computer
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actions particularly contribute to conceptual learning: the passage to another

representation, and the manipulation of what is called representatives.
Representatives are partial embodiments of graphs, tables or formulae that are

displayed by computers. For example, two concretizations of a graph differing

by their scales only (and not by the function they represent) are different

graphical representatives of the same function. Students who manipulate
representatives were able to interpret them to infer properties of functions.

THE RESEARCH QUESTIONS AND HYPOTHESES
We planned to characterize the richness of the concept image of the two
groups. The research questions that will be discussed in this report are: ( I )
How rich is the concept image of the two groups, as expressed in the examples

and justifications produced? (2) In particular, what is the status of the linear

function?
Concerning the first question, we hypothesized that, although the two

groups were both exposed to a rich spectrum of functions, G2 would be more
inclined to retrieve and use different kinds of functions in order to solve

problems. As for justifications, it checks whether judgment on functions is

driven by principles rather than on visual features. We hypothesize that G2
would prevail on GI for providing justifications based on principles. Such an
hypothesis, if checked, will indicate whether examples used by students are
prototypical, or whether they exemplify properties.

The second question whether linear functions are prototypical examples.
We hypothesize that both groups know that linear functions are not the only
ones whose graph passes through two given points, as opposed to the results
obtained by Karplus (1979), and Markovits et al. (1988). However, there are
still other questions that relate to the prevalence of the linear function: Is the
linear function preferred over other functions when it is legitimate to use it?
Do students use linear interpolations or extrapolations when there is no cue to
such a use, even when it leads to aberrations? All these sub-questions of the
first research question are quite open, concerning differences between groups.
Moreover, this question leads to investigate the possible existence of other
prototypical examples.

METHODOLOGY
Two groups of Grade 9 students participated in the study. Both groups belong
to the higher 20% of the general population in Israel. G 1 (n=71) underwent

4 - 261

O'P-0



the first curriculum on functions; G2 (n=32) underwent the computer-based
curriculum. A questionnaire was constructed to investigate the research
questions. It was administered to GI and G2 at the very beginning of Grade
10. The questionnaire includes eight items (some of them appear in the
appendix).The three first items are about functions whose graph passes through
two (Item 11 in the appendix), or three given points (Item 12), and about the
influence of a referent (here the "Bacteria puzzle") on the answers (Item 13 in
the appendix). The results on these items are documented (Karplus, 1979;
Markovitz, Eylon, and Bruckheimer, 1986). They showed the same tendency:
students are generally "linear", meaning that the linear function is often the
only one that passes through two given points, meaning also that linear
interpolation and extrapolation were preferred, even when they led to
aberrations (negative numbers of bacteria on Item 13c). The present report
focuses on the analysis of the results for these three items only.

RESULTS
To answer the first research question, we first analyzed the kinds and number
of examples used in the questionnaire. The number of examples (appearing in
graphs) was higher in G2 than in GI: GI students gave 1.13 examples on
and 1.17 examples on 12, in contrast with 1.31 and 1.56 examples for G I.
Similarly, GI hardly used families of functions (0.10 per questionnaire), in
contrast with G2 (0:78). For example, the following figure shows two families
displayed by G2-students.

The first one shows a family of piece-wise linear functions. The second one
contains a quadratic function along with a family of atypical functions, that is,
graphs displaying a freehand line passing through the given points.

Therefore, G2 uses more examples, and more families of functions to
solve problems. Analyzing the kinds of examples invoked in II, 12, and 13
gives more information about the richness of the concept image of the two
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groups. I la shows that GI as well as G2 were very ''linear": many students of

both groups chose the linear function as the only example of function passing

through two given points (59% for GI, 53% for G2). However, none of G2

students answered that the linear function is the only one, where 17% of the

GI students who chose the linear function believed so.
The following data interestingly completes the picture: 36% of GI students,

and 47% of G2 students drew another function. Moreover, observation of

these results shows that most of GI students who drew nonlinear functions on

I la, drew "atypical" graphs. In fact, 11% (resp. 25%) of GI (resp. of G2) used

functions that were not atypical, or not exclusively linear, for I la. Similarly,

among the 80 graphs drawn by GI (1.13 per student), 62% where linear, 5%
parabolic, 6% piece-wise linear, 21% atypical, and 5% did not answer. In
contrast, among all the 42 graphs drawn by G2 (1.31 per student), 55% were

linear, 25% parabolic, 5% piece-wise linear, and 17% atypical.

In summary, while many students of the two groups used linear

functions to exemplify one function passing through two given points, all
students in G2 (as opposed to GI) knew that this was only one example.

Moreover, GI students used almost exclusively linear or atypical functions, G2

often used other types of functions.

The justifications obtained by the two groups on the items of the
questionnaire were very different, and gave also precious indications on the

concept image of the two groups. For example, the justification written by a

G2 student for the first graph shown above was:
It can be one graph in the domain, and it varies in infinite ways outside.

Also, it can change in the domain if wish so (but only if there are not

two images for one preimage). See my drawing!
Typically, the justifications given by G I students are shorter, such as sentences

of the kind: An infinity of graphs passes through three points. To differentiate

between justifications, we introduced the term "idea unit". The first
justification contains three idea units: (1) it varies in infinite ways outside; (2)

it can also change within the domain: (3) there are not two images for one
preimage. The second justification contains one idea unit. The length of this

report cannot enable us to discuss the methodological problems (such as
validation) raised by this notion. However, equipped with this tool (presented

here intuitively), we could observe that 02 wrote significantly more idea units

than GI on all the items of the questionnaire. For example, G 1 students wrote
1.34 idea units in average for I2, in contrast with the 2.16 of G2 students. This
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data indicates that G2 students, in their justifications, lean much more than G I
students on principles.

In summary, G2 students gave more articulated justifications and more
examples. This confirms our first hypothesis, that is that G2 students have
richer concept image.

The results on 13 go further and clarify the status of the linear function
so frequently chosen in 11 by the two groups. Among GI students who chose
only a linear function on I la, 48% did a linear interpolation in I3a, 43% a
linear extrapolation on I3b, and 43% a linear extrapolation in 13c, the
respective percentages for G2 being 35%, 35%, and 18%. All students who did
a linear extrapolation for I3c reached a negative number of bacteria.
Therefore an important part of G 1 students use linear extrapolation when it is
totally inadequate. In contrast, G2 students use linear properties or strategies in
a flexible way, always considering whether they match the problem under
consideration. For example, a typical G2 answer to I3a was that of S22:

"You can say that the number of bacteria will be close to three thousand
because at 10 OC they were five and at 25 oC they are two, so when the
temperature rises, their number diminishes, so it will be between five
and two. At 20 0C, they are close to three (between 5 and 2)".

But then, the student drew an atypical curve and added:
"All the answers are based on the assumption that when the temperature
rises, the number of bacteria diminishes. But maybe it's a special kind
of bacteria without any proportional link between temperature and
number of bacteria. (For example at 10 OC they are five, at 15 OC their
number rises to 10, and at 25 0C there are only 2 left)."

In this example, the student clearly states that linear extrapolation is based on
an assumption she thought reasonable, although she is aware that it may be
false. And indeed, S22, like most of G2 students does not extrapolate on I3a.

In summary, many from G I students often choose linear functions
because they are prototypes from which they may infer aberrations such as the
extrapolation leading to a negative number of bacteria. On the contrary, G2
students use linear strategies or properties in a flexible way, depending on the
conditions under which the problem is posed. In 11, there is no reason not to
use a linear function to exemplify a functional property. In I3c where a linear
function is inadequate, the student searches for another kind of function, an
atypical function, that matches the constraints of the problem. For G2 students,
linear inter/extrapolation (learned on linear functions) is a legitimate strategy
applicable to other functions, when this application is reasonable. The strategy
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of linear inter/extrapolation, when used, does not imply that the function under
consideration is linear.

CONCLUSIONS
We showed that G2 students had a rich concept image. They used a broad
spectrum of functions to reason with, and evoked them to exemplify properties
or strategies. Linear functions were used frequently due to their usefulness.
The richness of their concept image was also expressed by well articulated
justifications. In contrast, G I students used linear functions as prototypes: they
were the functions that pass through two given points. Linear extrapolations
were not only reasonable but necessary.
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APPENDIX

I la. In the given coordinate system draw the graph of

a function such that the coordinates of points A and B

represent the preimage and the corresponding image

of the function.

1lb. Thenumber of different such functions that can

be drawn is: (a) 0 ; (b) 1; (c) 2 ; (d) more than 2 but

less than 10 ; (e) more than 10 but not infinite;

(f) infinite.

Explain your answer.

13 A scientist undertakes a study on bacteria cultures.

Bacteria species are known to live at a different range

of temperatures, therefore the number of bacteria in

such a culture is dependent on temperature.

The number of bacteria at the temperatures of 10°C

and 25 °C is marked in the following coordinate

system.

a) At the next step of the study, the scientist needs to

know the number of bacteria at 20C °. What can you

say about the number of bacteria at that temperature?

Explain your answer.

b) The scientist wants to predict the number of

bacteria at 30°C. What can you say about the number

of bacteria at that temperature?

Explain your answer.

c) The scientist wants also to predict the number of

bacteria at a temperature of 45 °C. What can you say

about the number of bacteria at that temperature?

Explain your answer. .
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AFFECTIVE CONSTRAINTS IN MATHEMATICS EDUCATION

Beth Southwell and Mon titiamis
University of Western Sydney, Nepean, NSW, Australia

Fear of failure or lack of confidence. as well as some contextual factors
inhibit understanding and enjoyment in mathematics. The way in which
students perceive mathematics and learning mathematics has an impact on
their success in the subject. Following a smaller scale survey of beliefs
concerning mathematics held by primary and secondary students and
teachers, this study looks in more detail at a larger sample of over 2000
secondary school students, makes further comparisons and suggests trends
in beliefs of students at secondary school level. This current study confirms
most of the findings from the previous study.

***

Too many numbers,
Too many signs,
Too confusing for the mind!
Too much to think about.
Too much to know.
And it is boring, 'cause I say so!

- Rosemary, Year 7
Is this how all high school students see mathematics? How is Rosemary being
affected by her view of mathematics?

Certainly, her poem implies that she does not find any enjoyment or success in
mathematics. One can only surmise possible reasons for this but it is alarming to
think that she has such negative views of the subject that she is willing to write them
in a poem to which others had access. Nor was she alone in her class.
Approximately half the class wrote poetry in a similar vein.

Rosemary's poem implies several beliefs about mathematics as she experiences it
and, after all, that is the way that everyone develops his or her beliefs 4bout
mathematics. From her emphasis on numbers, it seems reasonable to assume that
Rosemary believes that mathematics is just arithmetic. This seems to be a fairly
common belief among school students at all levels. The fact that so many people,
including the general community, appear to believe that mathematics is just
arithmetic could be the result of several factors. These include the past lack of
geometry and other branches of mathematics in school syllabuses, particularly in the
primary syllabus. Or it could be the result of the emphasis placed on numerical
computations in public statements and tests such as the Basic Skills Tests. Whatever
the cause, such a belief not only downgrades other branches of mathematics, but it
also inhibits students from gaining rich experiences which are related, sometimes
more directly than arithmetic, to their everyday life.
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Rosemary's emphasis On signs. while again indicating a belief that mathematics is
arithmetic, also indicates a belief that mathematics is highly symbolic. Of course. this
is so. Thc indication is, however, that Rosemary sees that symbolism only in relation
to arithmetic and does not appreciate the richness, beauty and usefulness of
mathematical symbolism in general.

The reference to mathematics being confusing could refer to the 'signs' or it could he
a general statement indicating a feeling of helplessness in relation to the subject.
lither way. the damage which has been done to Rosemary's perception of herself as a
mathematician is obvious. It is all 'too much'! She may as well have said, "I can't
think when I see all these signs. I can't learn it." How little confidence she has in
herself and in her ability! flow destructive of her self-image!

The final bold, almost defiant statement about boredom could he seen as an attempt to
justify her previous comments. This implies a certain feeling of guilt. or even
rebellion. against anyone who might have counter beliefs to hers. It does emphasise
the extremely personal nature of one's engagement with mathematics, or any subject,
for that matter. It seems, however, that mathematics arouses more polarised feelings
and beliefs that most other subjects.

. \s has been indicated, Rosemary is not alone in the feelings of helplessness.
frustration and boredom which she has expressed in her poem. Rosemary in her time .
will leave school, take up a vocation, perhaps marry and have children and become
part of the general community without ever having the opportunity to experience
mathematics as a relevant, interesting. exciting subject. Perhaps this is why the
general community of the present appears to have certain beliefs about mathematics
and certain expectations as to what is taught in schools and what students should know
as a result. The effect of these community beliefs appears to be that unrealistic and
probably limiting expectations are placed on students and teachers, schools and school
systems in general.

The firsi contact schools have with the community at large is through the parents of
the children in the school. Consequently, some indication of parents beliefs about
mathematics and about their children's mathematics could provide possible trends.
Once such trends are established, there may be strategies that can be employed to
gradually change the beliefs of at least a few of the members of the general
community towards more helpful ones.

Previous small scale research carried out by the writers (Southwell & Khamis. 1991)
using a sample of 51U primary and secondary students and primary teachers indicated
that the following beliefs were held:

1. You are either good at mathematics or not.
2. Answers in mathematics are either right or wrong.

If you do not get the right answer, you just start again.
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4. Mathematics is important for every daS, life.
5. Memorising facts and procedures is the way to learn mathematics.
6. Mathematics is arithmetic.

In this previous study, the secondary section of the sample (310 subjects) were all
female. The question arises, then, as to whether male students have different beliefs
about mathematics and about themselves as mathematicians. Also how are they
affected by the beliefs their parents hold? These formed the basis of the research
questions for the current study. They were:

1. Do male secondary school students hold the same beliefs about mathematics as
their female counterparts?

2. Do male secondary school students see themselves as mathematicians in the
same way as female secondary students do?

3. Do secondary school students have perceptions of their parents' beliefs about
mathematics which are different from their own?

The Sample

As the secondary section of the sample in the previous study was totally female, it
was felt that a sample of both male and female respondents may provide more
specific information. Consequently the secondary survey instrument was
administered to a larger sample from six schools consisting of both male and female
as indicated in Table 1.

School Female Students Male Students Total
Schoo1.1 175 219 395
School 2 243 246 493
School 3 193 . 193
School 4 355 355
School 5 367. 367
School 6 183 158 344
TOTAL 1149 990 2129

Table 1. Distribution of Sample

The Survey Instrument

The survey instrument used consisted of items adapted from Schoenfeld(1989) and
Way (1990). Information was sought on secondary school student' beliefs
concerning:

(i) their mathematical success or failure;
(ii) the nature of the mathematics learned;
(iii) the learning of mathematics in relation to other subjects;
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(iv) learning geometry; and
(v) perceptions of parental expectations.

The subjects were asked to respond to each item on a four part Likert scale ranging
from "1= very true" to "4 = not at all true". As well a number of open-ended
questions gave students the opportunity to express their views without constraints.

The Analysis

The analysis of the responses of the 2147 subjects was carried out by finding means,
standard deviations and significance levels for the responses made by female and
male subjects. In general, the analysis followed similar trends as in the previous
study. There were, however, differences of interest. These differences are reflected
in the difference in the male and female responses in the current study, since all
secondary school respondents in the earlier study were female.

A t-test was used to compare mean responses for females and males.

Results

Significant differences (p< .001) occurred in the responses concerning reasons for
getting good grades. These are shown in Table 2. The difference between female
and male students is significant (p<.001) on all five reasons with the highest response
being the perception that good grades are achieved because of the teacher's liking of
the student. Allied with this is the significant (p<.001) result that the main reason for
trying to learn mathematics is 'to make the teach think I'm a good student'.

Totals
N = 2147

Females
N= 1153N

Mean

Males
=974

Mean

Signif
Level

Mean S.D.
I. It's because I worked hard. 1.5 .6 1.5 1.6 p < .001
2. It's because the teacher like
me.

s 3.6 .6 3.6 3.5 p < .00

3. It's just a matter of luck. 2.8 .8 2.7 2.9 p < .00
4. It's because I'm always good

mathematics.
at

2.6 .8 2.7 2.5 p < .00
5. I never knew how it happened. 3.1 .8 3.1 3.2 p < .00

Table 2. Students' Beliefs AbOu Why They Get Good Grades in Mathematics

The reasons for getting poor grades were not so divided with the only significant
results being the responses "Because the teacher doesn't like me" and "Because I'm
just not good at mathematics".. The differences between male and female responses
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are given in Table 3. This shows the high response again concerning the teacher's
liking or dislike of the student being a critical factor.

Totals
N = 2147

Females
N = 1154

Mean

Males
N = 974

Mean

Signif
Level

Mean S.D.

I. It's because I didn't study hatd
enough.

1.6 .7 1.6 1.6

2. It's because the teacher doesn't
like me.

3.5 .7 3.6 3.4 p < .00

3. It's just had luck. 2.9 .8 2.9 2.9

4. Its because I'm just not good
mathematics.

at
2.8 .9 2.7 2.9 p < .00

5. It's because of careless
mistakes.

1.7 .7 1.7 1.8 p <.05

Table 3. Students' Beliefs About Why They Get Had Grades in Mathematics

No great differences were indicated in the female and male students' beliefs about
the nature of the mathematics they learn. There is a difference, however, in the
responses of the females in the current study and those in the previous one. The
current respondents are not as convinced as the previous one that mathematics is
thought provoking.

While both groups Of students feel that "good mathematics teachers show students the
exact way to answer mathematics questions you'll be tested on", their responses were
significantly different (p< .001). As well, the female respondents were more
convinced of this.than those in the previous study.

Female respondents believe that "some people are good at science and some just
aren't". Their response is significantly different from the males (p< .01). Despite
this. the difference between female and male respondents' belief that good science
teachers show students the exact way to answer questions is not as significant (p<
.05).

The t-test indicates that there is a significant difference (p<.01) between the degree
to which females and males believe that 'everything important about mathematics is
known already by mathematicians' This result is apparently inconsistent with the
another significant difference between females and males. This is that things can be
discovered about geometry without being taught (p< .001). This latter result
appears to be supported by the difference between female and male students on the
degree to which 'you can be creative and discover things for yourself" (p<.05). In
contrast, both female and male respondents believe that they can only verify
something a mathematician has already shown to be true.
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Although both females and males believe the best way to do well in mathematics is to
memorise all the formulas, the difference between females and males is significant
(p< .01). This is consistent with the difference (p< .001) between females and males
in beliefs about geometrical constructions and the. necessity to memorise the way to.
do them. Learning geometry as a means of better understanding mathematical
thinking differs for female and male students (p< >01).

There is a significant difference between females and males in the way in which they
respond to getting wrong answers. While both tend to 'start all over in order to do
it correctly', females seem to do this more readily than males.

Perceptions of students about their own mathematical ability and about their parents'
expectations for them differ between female and male students in several aspects.
Females see themselves as being average students more than males do (P<.01).
Females tend to complete their homework more often than males (p< .001). Males
believe it is more important to do well in mathematics than females do(p<.01). Both
mother's and father's perceptions of the importance of mathematics are seen to be
greater by males (p<.01).

Some items in the survey which invite some attention are some in which there is no
significant, difference between female and male respondents and some which reveal a
high response. In both categories are getting bad grades because of not studying hard
enough or because it is just bad luck, the belief that mathematics is mostly facts and
procedures that have to be memorised (significant at .05 level), the belief that some
people are good at mathematics and some are not, that in mathematics something is
either right or wrong. This last belief is also held for science though not for
English. Other beliefs held are that mathematical problem solving is important for
everyday life, that mathematical thinking is what we do in solving problems, and
working in groups is helpful. At the same time both females and males report that
they do not often work in groups. Both females and males, however, appear to want
to do well in mathematics.

Discussion

The reasons given by female and male students for getting good and bad grades
follow the generally accepted view that females attribute their success to working
hard and luck while males attribute their good results to being good at mathematics
as well as working hard.. The interesting aspect of these current results is the
significant role played by teachers in the students perception of their success and
failure. They believe they get good or poor results because the teacher either likes
them or not and they want to learn mathematics so the teacher will consider them a
good student. There is no mention of the content being learnt and taught and nothing
about the quality of the teaching. It seems to be the personality of the teacher which
is being referred to. Such a major influence played by the teacher could be due to
several reasons. These include the low perceptions which the students have of their

4 272
-44)



own ability which makes them see the teacher as being the holder and dispenser of
all wisdom in relation to mathematics. This is supported by other beliefs held that
mathematics is basically facts and procedures which have to be memorised. The
teacher is the assessor then to determine the degree to which these facts and
procedures have been memorised. This also links with the belief that good
mathematics teachers will show students the exact way to answer mathematics
questions they will tested on.

While no significant gender differences were observed in the respondents beliefs
about mathematics itself, the trend was to see mathematics as mostly facts and
procedures that have to be memorised. This was emphasised also in relation to
geometrical constructions.

The beliefs that mathematics is a subject in which there is nothing more to learn, a
subject in which you either get the right answer or you are wrong and that.you are
either good at mathematics or you are not indicate a very limited view of
mathematics and mathematicians. This could be because school syllabuses are very
tightly structured and the demands of public examinations inhibit the methods and
content introduced by teachers.

In contrast to beliefs about ability to do mathematics and science is that concerning
English. This supports the view that these subjects are seen as different kinds of
subjects to English.

Again, the emphasis seems to be on being right or wrong. When one gets a wrong
answer, the tendency is to start over again and not to use the work already done. As
has been shown in computer programming, the process of de-bugging is a very
useful one in helping the programmer become more skilled. This has not carried
over into other areas of education. This is true in mathematics possibly because of
the limited view the respondents have of mathematics as a discipline and also because
of their own lack of confidence in themselves as mathematicians.

The result that the perception of both female and male students that their mothers
consider mathematics important less than their fathers seems to indicate that the
community in general has not moved very far towards equal opportunity f9r all
students.

Conclusion

This preliminary analysis of survey responses from over two thousand students has
highlighted some issues which support previous findings. It also raises some issues,
such as that of the role of the teacher which will need to be investigated more
thorOughly. For further exploration, also, is the question of whether there are any
significant differences between the responses of the females in all girls schools and
those of females in co-educational schools. A similar question arises in relation to
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male students in all boys schools and those in co-educational schools. The one
heartening point in contrast to Rosemary's poem is that the respondents do want to
learn mathematics. It is up to teachers to ensure that the mathematics they learn is
enjoyable, exciting, useful and challenging.
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On the Ability of High-School Students to Cope with a Self-Learning Task in Algebra

Jonathan Sim? and Shlomo Vinner

Dept. of Science Teaching, Hebrew University, Jerusalem

Abstract: This paper describes an experiment conducted with 10th grade students, and pre-

service teachers who were given a self-learning task in which they had to characterize, along

guiding steps, a necessary and sufficient condition on the coefficients of a quadratic equation,

which will insure that the roots of this equation will be in the interval (-1,1). In this
experiment we wanted to check the ability of students to connect facts they already knew and

to draw the necessary conclusions. We wanted also to see how students can pass from
graphic aspects to algebraic ones and vice versa. Some additional interesting cognitive issues

turned up during the students' performance.

Introduction: In recent years there has arisen the need for alternative ways to assess students'

mathematical ability, as conventional tests seem to fail in bringing out the more creative

skills of students. In our research, we tried to assess students' mathematical ability by testing

their performance working on a self-learning task, given to them as a collection of guiding

steps which were supposed to lead the students to discover some new facts about a concept

which was already known to them. In this case, the characterization of the coefficients of a

quadratic equation which is both a sufficient and a necessary condition for the roots to lie in

the interval (-1,1). We had mainly three goals in mind:

a) Testing students for their ability to follow along a collection of guiding steps, to

relate the relevant steps and eventually draw the required conclusion. In order to perform

well, students have to show a "relational understanding" according to Skemp (Skemp 1979),

which is a higher level of understanding than the "instrumental understanding" usually

required from students. Schoenfeld (1987) describes a situation in which about 30% of

students could not solve a problem which was almost an immediate conclusion of a theorem

they had proved just before. Students usually withdraw from even trying to solve a problem

they have never seen before even if it is rather easy. In our task, we tried to show the

students that it is not as difficult as it seems, and that they should enjoy the challenge (which

at least some of them eventually did).

(b) Since several times during the task the students had to draw algebraic conclusions using

a graph, we could check their ability to perform the transition from algebraic aspects to

graphical aspects and vice-versa. Arguing correctly about algebraic facts using graphs, shows
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c) Since in self-learning tasks, the student have to interpret their way of thinking and reflect

upon it, interesting cognitive issues turn up, issues which do not become explicit during

routine learning. For example, in the present task the first step whose purpose for us was

only a technical one (to reduce the problem to the case of a positive coefficient of x2) brought

up some interesting aspects of students' dealing with symbols.

Methodology The task was given to 61 tenth graders at the School for Science and Arts in

Jerusalem. This is a boarding school for rather gifted students in the fields of science and art.

The task was given to students who do not excel in mathematics, but nevertheless possess

an above average level of mathematics abilities relative to the general average level in Israel.

In addition, the task was given also to 12 prospective mathematics teachers, studying at a

teachers' college.

All the students possessed the necessary pre-requisite knowledge of investigating the

roots of a quadratic equation and the graph of a parabola.

The text of the task was constructed in such a way that steps 1-4 below led the

students toward the three inequalities which constitute the characterization. At the end of step

4 the students can conclude that if the roots of the equation lie in the interval (-1,1) then

these inequalities must hold, and therefore they form a necessary condition. The students

were already familiar with the term "a necessary and sufficient condition". Steps 5-7 below

guide the students to show that the condition is also sufficient. The last.step checks whether

the students know how to apply in a particular case the criterion they have just established.

The students were given ninety minutes and were told that they may consult the

teacher whenever they encounter a difficulty which prevents them from going on. They made

use of it only at the beginning but after a slight "push" most of them worked by themselves.

Although the students were told they would not be graded, they showed high motivation to

complete the task.

The Working Sheet

Text o_ f the Task:

Given the general equation of a parabola: f(x) = ax' + bx +c, a 0 0, the goal of the

task is finding necessary and sufficient conditions for the parabola to have roots in the

interval (-1,1). Please explain every step you make.

1) Suppose a <0. Write, in terms of a,b,c another parabola having the same roots as

the given parabola, but with a positive coefficient of x2.

Therefore, we can assume from now on without loss of generality that a >0.
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2) Draw a graph of a parabola with two roots in the interval (-1,1), and a parabola

with only a single root which lies in this interval. Which of the following situations exists?

a) f(l)>O, f(-1)<0; b) f(1)<O, f(-1)>O; c) f(1)<O, f(-1)<0; d) f(1)>O, f(-1)>0.

3) Express the two inequalities which you pointed out in terms of a,b,c.

4) In both parabolas of part 2 the vertices of the parabolas lie in the interval (-1,1).

Why? Which of the following inequalities expresses this fact? (remember that a>0).

a) -b > 2a; b) 1bl <2a; c) -2a <b; d) 12a1 <b

From what you have shown so far you can conclude that if the roots of a parabola lie in the

interval (-1,1) then the three inequalities of (3) and (4) which you have pointed out must

hold. Hence these three inequalities form a necessary condition for this fact.

Now you have to show that these inequalities are also sufficient, which means that

you have to show that if these inequalities hold, and the parabola has real roots they must

lie in (-1,1).

5) Assume that the parabola has only a single root and satisfies the 3 inequalities.

Using the graphic meaning of a single root, from whichof the inequalities can you conclude

that this root lies in (-1,1)?

6) Assume the parabola has two roots but not both of them lie in (-1,1). Show that

there are 5 distinct cases and draw a suitable parabola for each case.

7) Show that for each of the 5 cases in (6) at least one of the 3 inequalities is violated.

Explain that if the 3 inequalities hold, the parabola cannot have roots outside (-1,1).

8) Given the parabola: f(x) = 5x2 + (k +3) x + k- 1.8

a) What is the range of k for which the parabola has two distinct roots which lie in

(-1,1)?

b) For what values of k the parabola has only a single root which lies in this interval?

Analysis of the Students' Performance:

We will analyze each step of the task separately. We will compare the quality of the

performance between the school students and the prospective teachers. In each step the

answers will be classified from the cognitive point of view into three categories. The first

category will include the answers which show an ability to work correctly with formal

algebraic symbols and a "relational understanding", namely an ability to connect several facts

and draw the necessary conclusion.

Answers in the second category will show a correct intuitive understanding but

without the ability to argue mathematically correct. The third category will include answers
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which are wrong and show that the student did not understand the relevant point. These will

also include answers which use "pseudo analytical" arguments, by which we mean answers

using seemingly relevant facts which have nothing to do with the required conclusion (Vinner

1994). The meaning of the categories may differ slightly in different steps, but in any case

the categories define different levels of thinking.

Step 1: The role of this step was to reduce the problem to an equation with a positive

coefficient of x2, and the expected answer was of course to multiply the equation by -1. This

"innocent looking" step produced some interesting results.

Category I (twenty-four students = 20 + 4, the underlined number is the number of the

prospective teachers). Here we included the expected answers with a correct argument. Most

students argued that the multiplication by -I does not change the roots and wrote the new

equation: -ax2 -bx -c = 0. There were also 4 correct graphic arguments. The students

showed that multiplication by -1 does not change the intersection of the graph with the X-

axis, and produced an appropriate drawing.

Category 11 (thirty-five students = 30 1- 5) Most of the answers in this category were

technically correct answers as regarding the multiplication by -1 but without any

argumentation. There were also some answers with correct arguments which were included

in this category. The students showed that if we multiply a quadratic equation by -1 the

formula which we use to find the roots remains invariant. These students paid no attention

to the fact that we get an equivalent equation whenever we multiply by -I both sides of an

equation and it has nothing to do with the way we solve the equation. Instead of thinking

about the meaning of the "root", the students think about the procedure to find it. The

procedure becomes a substitute for the concept (Vinner 1994). Another interesting point was

that some students wrote the new equation as ax2 - bx - c = 0 because they wrote the

original equation as -ax2 +bx + c = 0, in disagreement with the equation written on the

working sheet. They thought that if the coefficient of x2 is negative, it must be written as -a.

For them the letter "a" cannot symbolize a negative number. The intuitive way of thinking

of these students connects automatically a negative number with the minus sign, which must,

in their opinion, be expressed visually. This is one of the aspects of the difficulties students

have with formal symbols.

Category III (fourteen students = 11 + 2) Students who did not answer at all or did not

know how to write the new equation.

Step 2 Here the students had to conclude from the form of the graph an algebraic inequality.
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Almost all students did it correctly 69 = 61 + and were included in Category 1. Four

students who checked a specific example and pointed out the correct pair of inequalities

which fitted the example were classified under Category II, because they did not handle the

general situation, though, these students showed in this example that they knew how to make

the right transition from a graphic representation to an algebraic one.

Step 3 The students had to substitute first x = 1 and then x = -1. Here, sixty-one students

(50 + .11) wrote down the right answer and were classified under Category I. Eight students

were classified here under Category II as they either omitted the c or wrote:

f(-1) = a - b c. This might be clerical errors or that the students thought in the first case

that as the summand c is not influenced by the substitution, it can be omitted and in the

second case, that the substitution -1 changes the sign of c, too. If so, we see here again a

certain difficulty in working with formal algebraic symbols. In category III we included four

students (3+ I) 3 did not answer the question at all and one gave an interesting answer. He

wrote a? + b + c > 0 and a2 - b + c > 0. The square sign in x2 which is of course crucial

here, triggered some mechanism which led the student to sustain it, even after a numerical

substitution was carried out.

Step 4 In this step, as in step 2, the students had to show an ability to pass from the form

of the graph the vertex of a parabola lies between the roots to the algebraic inequality

which expresses this fact: -1 < - b/2a < 1 which is equivalent to I b I < 2a (as a > 0).

Here, twenty-six students (22 + 4) answered correctly and were included in category I,

thirty-eight students (30 + a) pointed out the correct inequality, but without any reasoning.

They were classified under category II. Nine students were classified under Category III as

they either did not answer at all or pointed to a wrong inequality. In our opinion, the

problem here lies in the difficulty students usually have dealing with absolute values.

Steps 5-7 of the task were given (because of technical reasons) only to 37 students including

the 12 prospective teachers.

Step 5: The students had to remember that in case of a single root, this root is the vertex and

the relevant inequality is I b I < 2a. Here seventeen students (11 + ¢) answered in this way

and were included in Category I. Other fifteen students (11 + 4) pointed to the correct

inequality without giving any explanation and were classified under Category II. Additional

five students (3+2) gave wrong answers and were classified under Category III. Here we

encountered a good example of what we call a "pSeudo analytical" argument. One student

answered as follows: "Since if a parabola has a single root, then b2 4ac =0; and since in
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this formula, the sign of b is irrelevant, and since the only inequality where the sign of b is

irrelevant is the inequality IbI < 2a, hence this is the appropriate inequality".

Step 6: We expected this step to be rather difficult for the students as it involved the concept

of the "complement of a set" and required good visual thinking in order to point out all five

cases. Very often students confuse the concept of the complement with the opposite attribute.

Therefore, we expected many answers to point out only the cases where both roots were

outside the interval (-1,1) and omit the cases of one root inside and one root outside.

Thirty students (23+7) students drew correctly all five cases and were of course included (to

our pleasant surprise) in Category 1. Two students pointed only to the above mentioned cases

and were included in category II. Five students did not answer at all and were classified

under Category III..

Step 7: In this step the students had some difficulties in understanding which inequality must

be violated. Only 19 students (16 + 3) students gave a full answer and were included in

Category I. Nine students (7 + 2) answers were classified under Category II. These answers

were only partially correct. The students pointed only in part of the cases to the crucial

inequality. A typical error was the following one: In the case of one root inside the interval

and one root outside, the students drew the following graph:

In this drawing, the vertex is outside the interval, but it is not necessarily there. The

crucial inequality which is violated is of course f(1) > 0 and not I b I < 2a to which the

student pointed. Tall (1994, p.38) writes that one aspect of advanced mathematical thinking

is to use images "without being enslaved by them". There is nothing negative in using

visualization to draw algebraic conclusions, but the student who possesses good mathematical

thinking knows what general conclusions he can draw and which parts of the graph hold only

in the specific example. Here, students showed that they do not possess this aspect of

advanced mathematical thinking according to Tall. Nine students (2+2) did not answer at

all and were included in Category Ill.

Step 8: The role of the last step was to check if the students know how to apply the
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characterization they had just learnt to a particular case. Here they had to add also the

requirement of a positive discriminant. They had to solve a system of inequalities, among

them an inequality including absolute values. Half of the students (36 = 34+2) did the

computation correctly (disregarding some minor errors) and were classified .under Category

I. Ten students (6 +4) solved correctly only some of the inequalities and were classified

under Category II. They had, of course, difficulties solving the inequality I k+3I < 10, and

actually solved only the inequality k+3 <10. Three students had difficulties with the

inequality f(-1) > 0 as the parameter k vanishes and they did not know what to conclude

about k from the inequality 0.2 > 0. '

Here we see some of the difficulties students have regarding the role of parameters.

Twenty-seven students (21 + ¢) either solved only the inequality requiring the discriminant

to be positive or did not answer at all. We classified all these answers under Category III,

since only to check when an equation has two roots is a common exercise and the crucial

inequalities which are the outcome of this self-learning task were not even mentioned by the.

students.

Summary: In our summary we want to do an overall analysis of the students' performance,

according to our three categories. Since steps 2,3 and 6 of the task were rather easy (more

than 80% were classified under category I), our analysis will be based mainly on the

students' performance in the remaining steps. These steps are more interesting from the

cognitive point of view. We attach much importance to the last question, as we believe that

not knowing how to apply the criterion which is the goal of the entire task is a failure.

Using this kind of analysis we conclude that, on the average, about 35% of the

students were included in Category I, about 40% were included in Category II, and the rest

were included in Category Ill. In the last step, 37% of the students were included in

Category III. Thus, we can claim that about 60% - 70% of the students in our sample are

able to follow a self-learning task. They will not do it in a faultless way but they can grasp

the general idea. They can overcome their tendency to avoid new problems and possess an

adequate level of "relational understanding."

One of the factors which prevented students in our sample from performing better is

their poor handling of formal algebraic expressions and rather complicated algebraic

manipulations like solving inequalities containing absolute values.

Students showed in most cases that they can make the correct transition from graphic
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aspects to algebraic ones. They do not avoid visual consideration as do first-year university

students according to Vinner (1989).

The school's students were somewhat better than the prospective teacheis, especially

where technical computations had to be made. They are probably better trained in this area.

The majority of the school's students enjoyed very much working on the task as it

was for them a pleasant deviation from the routine and an interesting challenge. They asked

for more tasks of this kind.

Our data and analysis justify suggesting this kind of activity as part of the common

mathematical practice for students with similar qualifications to those in our sample. Namely,

students with reasonable motivation to perform a multiple step task.
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Learning about Teaching: The Potential of Specific Mathematics
Teaching Examples, Presented on Interactive Multimedia

Peter Sullivan
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Abstract: This report arises from a project which is developing particular
exemplars to support learning about teaching mathematics which are
delivered by computer, integrating video, graphics and text. A small scale
investigation of the use of such a resource with groups of teacher education
students indicated that students can move beyond merely describing teaching
events to detailed analysis and explanation. It is suggested that such a resource
can enhance learning about teaching because links between theory and
practice are made explicit, students can move to higher levels of cognitive
engagement on the study of teaching, and students can assume direct
responsibility for their own learning.

The use of teaching exemplars

Initial education and induction for professionals like lawyers and doctors is
less problematic than for teachers since entrants into those professions have had few
experiences of the operation of the profession and so their initiation is likely to be
more formative (Lortie, 1975). As pre-service teacher education students begin
their training with well developed conceptions of teaching, it is likely that they will
interpret theoretical positions and suggested teaching approaches in the light of
their own pre-conceptions and prejudices. The tendency will be for reproduction of
models of teaching to which the students have already been exposed rather than a
genuine consideration of alternate approaches. The problem is compounded for in-
service teachers.

Clearly there is a need for such teacher education students to engage in the
study of teaching in a way which challenges them to evaluate their beliefs and
understandings of teaching processes. There are a number of challenges for teacher
educators, two of which are the focus of this report. The first is to support the
study of, and reflection on, teaching in a way which stimulates not only description
of teaching events, but also interpretation and analysis of actions, contexts and
interactions. The second is to structure learning opportunities which facilitate
teacher education students' construction of their own knowledge about teaching.

Opportunities for linking theory and practice are central to meeting both of
these challenges. The practicum provides rich opportunities for this synthesis, but
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such interaction is often less than ideal because observation of classrooms is carried
out by inexperienced observers in varied and isolated situations. In preliminary
studies, we found that field experience did not generally allow teacher education
students to discuss, analyse, or even identify quality teaching practices (Mous ley &
Clements, 1990; Mous ley, Sullivan & Clements, 1991).

In the project which forms the basis of this report, group study of particular
teaching exemplars or cases was used to prepare students for, and to supplement,
their practicum. The term case methods is used to refer to the study, analysis and
reflection on particular teaching incidents or examples of classroom teaching (cf
Barnett, 1991). Merseth and Lacey (1993) suggest that case methods can develop
skills of critical analysis and problem solving, represent the complexity of teaching
situations, foster multiple perspectives and levels of analysis, and offer students
opportunity to engage directly in their own education.

We used interactive multimedia (IMM) to present the source material for the
case studies. Prior to the development of the 1MM resource, this project identified,
and developed a framework for describing, elements of quality teaching. It used
analysis of recent literature and a survey of 200 practitioners, teacher educators and
other education professionals from several countries (Sullivan & Mousley, 1994).
Examples of full lessons which exemplified the components of quality teaching
were partially scripted, then taught and videotaped. These tapes were examined
using several techniques, including a qualitative analysis of unstructured reviews of
the lessons by over 30 experienced teacher educators (see Mousley, Sullivan, &
Gervasoni, 1994), then transferred to CD-ROM disc and an 1MM environment was
authored to provide flexible access to these data.

The IMM resource is presented on computer, and includes videotapes of
mathematics lessons, other video records such as pre and post lesson interviews
with the teachers, procedural documents and readings associated with the lessons,
graphic representations of data, and other appropriate resources. It was not
authored as a didactic "This is the way to teach!" program, but is an extensive
information bank which can be accessed in flexible ways to support detailed
classroom observation and analysis. Indexing and the interactive nature of the
program allows scenarios to be accessed and linked to other data at the press of a
key, thus enabling users to focus on specific teaching skills, moments of interaction,
selected sets of incidents, sequences of events, links between written theory and
action, and so on.

Merseth and Lacey (1993) argue that the potential of multimedia includes the
possibility of introducing the complexity of teaching to novices, that the non linear
capability distinguish multimedia from conventional videotape since they allow the
use of multiple perspectives and opportunities to review situations, and that
knowledge arising from the use of multimedia is obviously constructed by the user.
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Multimedia programs have been used for didactic delivery of teacher
education programs (eg. Carlson & Falk, 1991, Pape & McIntyre, 1992), including
some specifically for classroom observation (eg. Dgasy, 1991; Jacobson & Hafnr,
1991). Research summaries (see, for instance Widen & Roth, 1992) report
significant changes in the roles of students and teachers in computer-aided learning
situationsbut the process remains essentially one of following guided instructional
pathways. The current project focuses on provision of an information base from
which knowledge can be constructed by users.

This is a report of a small scale trialing as a preliminary investigation of the
effectiveness of the resource.

A study of the effectiveness of the study of teaching cases delivered on
interactive multimedia

This study had two goals. The first was to describe some teacher education
students' interactions with the resource, and, in particular, whether users described
teaching events observed or whether they endeavoured to interpret and/or analyse
the events and their significance. The second goal was to examine whether
unstructured and unsupervised use of the resource facilitated students' engagement
in exploring and discussing teaching events in a way which enhanced the
formulation of their own theories about teaching, and which had the potential to
challenge their own pre-conceptions.

The subjects in this study used the resource as a work requirement of a final
year undergraduate course on the study of mathematics teaching. All interaction
with the 1MM resource was in groups. After using the resource for approximately
10 hours, the students participated in debriefing seminars and individual interviews.
The course also included more conventional components such as reviews of the
literature and lectures and tutorials on aspects of mathematics teaching.

There were three aspects to the data collection. First, an observer made
unstructured notes during each small group session on both the interaction of users
with the harthVare, and also on the style and quality of their discussions and critique
of the issues which arose. Second, users maintained a journal, compiled
individually, during their interactions with the resource. This was essentially an
unstructured record of the issues which arose which were seen as significant by the
users. These data were supplemented by interview transcripts. Third, a computer
log was made of pathways used by the groups through the resource.

Results

The data are predominantly qualitative and only brief excerpts are presented
here. The following extract, which is representational of the type of data collected,
describes a particular incident and subsequent events from the interaction of one of
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the groups with the IMM resource, and is illustrative of the style of interactions
which occurred. These data suggest that the study of particular cases using IMM
does have the potential to engage students in explaining and analysing teaching
events and constructing their own knowledge about teaching.

A particular incident

This incident described here arose from one groups' discussion arising from
a screen which consists of a map of the classroom with individual tables labelled
with the names of the pupils. By placing the mouse over the name of a student it is
possible to see a photograph of the pupil. By clicking on the photograph, video clips
of each interaction in which that pupil participates can be viewed.

The following is the extract from the record of the observer:

There was one incident where the group studied a single screen for 18 minutes. During

discussion they raised the issue that the boys were better placed. They noted that all five boys out
of 16 students were seated around the outside of the room. It was hypothesised that this gave them
a better view of what is happening in the classroom.

The group considered other aspects of the grouping of children which arose from the study of

the classroom layout. This included such matters as whether boys should be placed together or
separately. They pursued this line and investigated the quality of responses that the boys made for

particular tasks. This group continually referred to classroom layout in subsequent investigations
and used the pause and replay facility again and again during various video excerpts to comment
on aspect of classroom layout and design.

The following are extracts from the journal of one student from the above
group describing the study of this screen:

Went to the "Map of Classroom layout". Discovered seating of tablesboys and girls, 5 boys
and 11 girls, 4 tables all have four children, some have 2 boys/2 girls, one has no boys.

We got the impression ( the teacher) asked lots of questions to boys. Boys appear to be better
positioned on outside of tablesbetter able to see board.

Looked at photos of individual children to see if they were advantaged/disadvantaged by

position in room. Decided boys have better view of blackboard/front of room. Feel four groups
of four is good but wonder why boys are placed where they are. How are groups selected?

Tables good set up to talk. Tables angled and board not really used so perhaps set up not bad.

In this example, the group focussed on classroom configuration, and used this
as the basis of further investigation of associated issues of classroom interactions.
Some issues identified were perhaps a reflection of their other studies (eg the
gender issue), but other aspects (eg the view of the blackboard) were most likely
initiated by the group members themselves.

As a group, the users decided to develop their knowledge of classroom
interactions and questionning by focussing on all of the questions asked during these
particular lessons. This was recorded in the journal of the same student as follows:
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Would like to look at questions used so went to "Phases of Lesson", then "Extending The

Problem".

We continually paused program to discuss and record.

Decided to move out of this phase of lesson because we were not clearly focussed on original;

questions about her questioning. We were looking at too many different things and getting

distracted.

Like to look more at teacher communicating, questioning etc. Want to look at gender

breakdown of interactions. Went to "Six components of quality teaching". Chose
"communicating"-computer responded with some examples. "Communicating" menu-decided to

look at the "Teacher to student communication"-still want to concentrate on boy/girl breakup. Still

not sure if this section is what we need.

First 3 questions to girls. Are we getting all communication or just a selection?

Back to main menu-decided to look at "Movies of segments of lesson" and then do manual

count.

Looked at Area lesson and Investigation segment. Moved forward with FF to find spot

where she was questioning kids. Very handy.

Clearly the group was using the resource to collect data for their
investigation. As an aside, it is interesting how the research tool, in this case the
IMM resource, can impede thinking about the substantive research issue.

The following are further extracts from this journal which show how this
investigation developed. This student went beyond merely describing what was
happening and sought to explain and even analyse the events. It is also clear that this
student is engaged in a meaningful process of constructing knowledge about
teaching:

Why did she ignore all the hands when setting the kids to work? Did they know what to do?

Were they seeking help?-Did ask one girl when put others off.

Interesting how she got the kids quiet by just standing at front of room. Chose a boy to give
an explanation of an answer/strategy->positive response. Questions to girls are more basic eg: Do

you understand? Perhaps we should be looking at higher/lower order questioning. Is it
reinforcing boys are better at working out? Although we have a feeling (the teacher) wouldn't.
Second child chosen to give strategy/answer was also a boy positive response. Third person was

a girl. Count came up 10 girl to boy 5, considering ratio of girls to boys in the class this is a fair

breakdown.

The group went beyond merely counting interactions and was investigating
whether the quality of interactions are related to gender. The group then focussed
on graphs of the number of interactions of each pupil and the times of those
interaction which are included in the resource

Decided to look at matching phase in other lessons. But we can't find one to match.

Went back to check last menu. Decided to look at Reporting Back segment of lesson.
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Comparing strategies used to answer questions. Chose Emily first, then Olivia, then Laura.
"Data from lesson" gave graph of interaction.-(The resource contains graphs which show the
number of interactions of each pupil, as well as the times of each interaction.)

Trying to find graphs again. ... (A group member) asked "Do we know where they are
sitting'?" "Map of classroom layout" shows John up near front, Daniel in back corner. Both very
close to camera. Why didn't they record any interactions? Clicking mouse button on layout to
give picture of pupil is handy to remind us of their part in lesson.

Wondered if positioning in relation to camera had influenced the.way children participated, or
seemed w participate. Go back to graph to see who participated the most, Patrick, Emily, Kadin,
Gabrielle. Gabrielle and Kat lin on front table, Patrick and Emily on back table. Positioning doesn't
seem to influence number of interactions.

Decided to look at each student's interactions. "Movies of each student's interactions" in
research menu. Click on child's photo to get video of interactions. Instructions on screen helpful.
Quality of video is very good. "Video of children's interactions" watched Patrick, then thought it
would be interesting to watch Emily. Emily's questions seemed designed to get attentioneg:
asking questions about rules that had been clearly explained.

This student, at least, was engaging in a genuine research process and was
seeking to explain and analyse teaching processes. In addition to comments on
program design, this user addressed a range of issues associated with classroom
interactions, including classroom seating and its link to classroom questioning,
group structure and composition, different types of questions asked to boys and
girls, the use of target students to facilitate lesson flow, differential class control
mechanisms based on gender, the use of high and low order questions, the
relationship of seat placement to style of interaction, and identification of attention
seeking behaviour. While the user did not necessarily move towards closure on any
issue, the consideration of classroom variables is probably sufficient indication of
the potential of this resource to support learning about teaching. It also appears that
the interaction with such case material in small groups engages teacher education
students in thinking about teaching in a way which has the potential to challenge
their own conceptions and which can facilitate their own construction of teaching
processes.

Other issues

Other issues related to the use of 1MM and case methods were identified in
this trialing. Some of these are referred to briefly in the following.

While the resource allowed high level of cognitive engagement for some,
there were other students whose reports were restricted to merely describing events
presented, such as:

Confusion over solid shape and dimensions therefore discusses notion of dimensions.
Perhaps a cube could have been drawn. Recaps directions. Strategy for drawing design was
open.
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Discussion confusiOn of box shape. Strategies for drawing-very open-not too much
direction. The diagram not very descriptive for 3 dimensions. Expectations and explanations of

team work not given.

Teacher educators need to find ways to support such students in moving
beyond mere description, and attempting to seek to explain and/or analyse
classroom events.

It also appears that there may be a need for some intervention to allow
students to articulate concerns and also to consider alternate perspectives, as
perhaps indicated by this comment from one journal:

One point I would like to make at this stage of viewing is that I am wondering what exactly is
being taught. I am a little concerned nowadays that pupils are not being taught much ie teachers
not teaching anything, but rather children finding out for themselves idea.

While this indicates a prior conception of teaching processes, it is also a
significant issue for many teachers. One of the advantages of the use of case
methods is that such fundamental underlying conceptions can be raised by students,
and can then be addressed by the teacher educator at a time appropriate for the
students.

It was also clear that the use of groups is far from problematic and strategies
for supporting group work need to be identified, as indicated in this journal entry:

I mentioned I think in the last diary entry that I felt frustrated. Well I feel even more frustrated
now with these two women not being able to make their minds up on what to look at let alone talk
about! Maybe they feel the way I do! I think it's better to view the entire lesson then talk about
the elements of quality teaching rather than view little bits at a time. It is far too disjointed that
way. Perhaps we need more structure.

It also seems that while some students thrive on the freedom provided by
such a resource, other prefer more structure to their work:

The program has some fantastic features but we tended to lose track of what we were doing

and constantly went back and forth between menus. More useful if we had a more defined
research question and were experienced with the program.

In summary, this small scale investigation of the use on an 1MM resource
suggests that case methods have potential to support the integration of theory and
practice, and that IMM can be an effective way to present case materials to teacher
education students. While some students were able to engage in the analysis of
teaching in a significant way, other students required more support. It is clear that
there is a range of issues related to the levels of student support and direction, and
the form of any intervention, which require further research.
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This paper presents the results of a Mexican/British research project which
investigated the mediati. g role of spreadsheets for expressing and solving
mathematical modelling problems within science. The study was carried out with two

groups of 16-18 year old students, one in Mexico and one in the UK. Results of the
study indicate that the external represesentations of the spreadsheet offer students a
structuring resource for deVeloping mathematical models in science and for making
sense of the links between the model and the physical situation. Students' preferences
for algebraic and graphical representations were shown to be strongly influenced by

previous school experiences.

Introduction and Theoretical Approach

Research on mathematical modelling in education has recently received more
attention due to the widespread use of computers (Mellar et al, 1994). Within this
paper, we report on a collaborative Mexican/British study aimed at investigating the
mediating role of spreadsheets for expressing and solving mathematical modelling
problems within science. We also investigated the links students make between a
physical situation and a mathematical model of that situation, and probed their
evolving preferences for the external representations available in the spreadsheet.
The study was carried out with a Mexican and a UK groups of 16-18 year old
students who were all studying one or more of the sciences prior to taking University
entrance examinations.

There are a number nf i ^'°-rclatcd aspects of Vygotsky's work which influenced the
research. One of them is the idea that it is "the person-acting with mediational
means" which is the focus of the analysis (Vygotsky, 1978; Wertsch, 1991). From
the point of view of this study, the spreadsheet environment and more specifically
the spreadsheet external representations are potential mediators of mathematical
modelling processes. Vygotsky stressed that mediational means are sociocultural in
the sense that mediated action cannot be separated from the social milieu in which it
is carried out. This implies that studies of school pupils cannot be separated from
influences such as school curriculum, school culture and out of school culture.
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The work of Lave (1988) suggests that mathematics can surface in different forms
within different settings, and that mathematics can give structure to, or be structured
by, other ongoing activities. With this idea in mind, we wanted to probe how
mathematical practices structured science courses in two school cultures, which
structuring resources were manifested in student modelling activities and whether a
spreadsheet could be used as a structuring resource by students.

Methodology

The study consisted of three phases during which, case studies of 9 Mexican and 12
UK students were developed (although all experimental work involved whole classes
rather than just case-study students). Phase 1 involved a study of Mathematical
practices within science before the spreadsheet was made available, followed by a
pre-evaluation test and follow-up interviews. In the first part of the school year. a
training course in Excel was given to the students, using simple, yet relevant science
problems. Phase 2 included the implementation and observation of experimental
spreadsheet modelling activities (developed by the teams) which students worked on
during appropriate science lessons, in the classroom. Further interviews were
conducted. The final phase entailed a post-evaluation test and interviews. Data
collected included: field notes and video recordings of mathematical practices before
the spreadsheet was made available; field notes and video recordings of innovatory
modelling sessions; video recordings of individual interviews with case study
students; and records of students' paper-based and computer-based work.

To match the topics of the science curricula in each country, the two groups worked
on slightly different sets of modelling problems. The titles of the worksheets
designed for the modelling activities Were : "Diffusion", "Population Growth" and
"Population Genetics" for the biology class; "Chemical Equilibrium", Environmental
Pollution", "Periodicity" and "Lattice Energies" for the chemistry class and
"Collisions I (Inelastic)", "Collisions II (Elastic)", "Gravitation" "Artificial
Satellites" and "Oscillations and Waves" for the physics class (the underlined ones
were common for both countries). The purpose of these activities was to allow the
students to create an "artificial world" (Mellar et al, 1994) as an image of
phenomena, so they could be explored and studied in detail. These models were a
combination of "exploratory" models (models which involve the learner in exploring
ideas about a topic presented by someone else) and "expressive" models (ones which
involve learners in expressing their own ideas) since the students built the models
guided by the presentation of the worksheets (Mellar et al, 1994). The students were
asked to construct graphs relating the variables of the model and to play with various
parameters corresponding to different physical situations.



Within this paper, we present some of the results of the study. illustrated in places by
the views and work of two of the students that participated in the experience:
Marina, a Mexican student, and Adam, an English student.

Mathematical Practices before spreadsheet work

From our classroom observation at the beginning of the school year, before the
computer work commenced, we found differences between the teaching and learning
of science of the two groups of students. The Mexican students were taught In a
formal way, referred by some authors (diSessa, 1993) as a top to bottom approach:
from general ideas down to particular examples. In contrast, the UK students were
exposed first to practical situations and specific examples with the objective of
investigating and discussing the important issues of the topic being studied, leading
to a general view. Analysis of the pre-16 curricula and examinations in both
countries also indicates quite substantial differences in the types of teaching methods
emphasised and the approaches to mathematics. More algorithmic methods are
emphasisedin mathematics in Mexico and in particular formal algebraic approaches.
However, in the UK there has been a move away from taught algorithms resulting in
an emphasis on approximate answers and the reading of graphs.

Analysis of the pre-evaluation and interviews showed that the Mexican students
demonstrated a preference for, and proficient use of, formulae and equations whereas
the UK students preferred, and were more competent with graphs. Mexican students
tended to use taught formal algorithmic methods when solving science problems, for
example 'the rule of three'. They used These external resources even" when
interpreting tables and graphs. The result in Mexico is typified by Marina who
described a preference for symbolic representations rather than tables or graphs and
frequently used the 'rule of three', even in cases where it was not appropriate. For
example, in the pre-evaluation when requested to read-off values from a non-linear
graph. The use of such a taught algorithm seems also to be related to a need to
provide an exact answer. In contrast, Adam demonstrated a strong preference for
graphical representations, both for solving problems and as a means of understanding
physical phenomena. This preference stemmed from his belief that graphs allOw a
global view ("it is more visual and you can see all of it"). An equation seems not to
be used by Adam to give insight into understanding a physical situation whereas he
would use a graph because, "it's easier to see what's happening".

Whilst, like Marina, Adam was competent with algebraic manipulations, he did not
demonstrate the same need for exact answers or the use of algorithms. Adam was
happy to approximate answers when he thought this was appropriate and used a
graphical representation as a tool for this purpose. He articulated a dislike of
algorithmic approaches to problem solving as "you don't understand why you do



each thing". In particular, he said that he did not like using a "triangle method" for
manipulating three element expressions (e.g. F = ma) which they had been taught in
science as a rote method for transforming equations.

Neither of the groups had experienced mathematical modelling in science before the
study, although a sub-set of the UK students (who were also studying post-16
mathematics) were being introduced to modelling in mathematics. In both Mexico
and the UK, before the spreadsheet activity, most students had difficulty articulating
their understanding of a mathematical model and several professed to have never
heard of the idea. In his first interview, Adam said, "is a model something to explain
how something works, in a more clear way ?".

Spreadsheet modelling

The vast majority of students in both Mexico and UK became competent at
developing spreadsheet models of science situations and developed some
understanding of mathematical modelling. When the Mexican students were asked in
the final interview what they understood by a mathematical model, they gave a
partial list of the names of the spreadsheet activities carried out during the year and
there was evidence that the spreadsheet experience had influenced their conceptions.
For example, one pupil stated that it is "a description of a real situation using
numbers and variables" (a spreadsheet type of idea). The UK students made
comments such as, "it's a theory ... the model isn't actually true"; "it's mathematical
expressions which describe the situation - what is happening".

To a certain extent, the student's initial preferences for spreadsheet representations
reflected their preferences in paper-based situations. For example, Adam's preference
and use of the graphical representation. His preference did not diminish as the year
progressed but the process of actually constructing a graph within a spreadsheet may

-have played a significant role in his approach to understanding a topic. For example,
he said that he disliked one model because "I found that a bit boring, I knew what to
expect 'cos we'd seen all the graphs in the book". However, his spreadsheet work
meant that, "I'd remember it (the graphs) more vividly than I would if I saw it in a
book". Marina's appreciation of the graphical representation developed through the
school year so that she no longer relied solely on symbolic representations but was
able to incorporate other representations when making sense of a science problem.
Research in psychology has suggested that students have a working style along the
dimension visual/sentential (Cox & Brna, :995) Our study using a modelling
approach with spreadsheets suggests that such a style would be very influenced by
previous school experience.
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The spreadsheet approach facilitates the analysis of a science problem. The different
representations available (tables, graphs and formulae) allow students to produce a
rich spectrum of results and lead students to make links between them. The
transformation of formulae into lists of numbers and graphs prOvokes students to
face a variety of representations of a phenomenon, in a point by point or global form.
The spreadsheet allows a student to change the values of the parameters involved
and to see immediately the effect on the tables and graphs, giving a student the
power to analyse many cases with a simple change of a number in a cell. The
spreadsheet work confronted students with the need to make links between
representations and they began to understand the relationship between the table and
the graph and the spreadsheet formulae. They appreciated that altering one aspect of
a formula had implications for the other representations so for example, with
reference to the parameter 'a' in the formula x = at2 -t3 Adam said "Define the
constant, so you can change it and the whole thing (spreadsheet) will change".

The spreadsheet as a structuring resource
For the students, the spreadsheet became an important tool not only to perform
calculations, but also to give structure to the model and to provide feedback on the
modelling process. In the construction of a spreadsheet model, the variables are
usually defined in columns and their relationships with each other have to be made
explicitly with spreadsheet formulae. Analysis of videos of students constructing
spreadsheet models indicates that they can use a spreadsheet as a structuring resource
when identifying the variables within a model, "This column is going to be (pointing
to the column) the amount of substance does it understand formulae....at a
time...so N is the amount we came out at the end ... so it's that which is No which is
the 100 ". Using 'Define Name' to separate absolute from relative spreadsheet
references helped students to differentiate between the parameters and variables
within a formal model.

The ways in which the spreadiheet structured Marina's modelling activity is
illustrated by her solution to a problem presented to the students in the final
interview,

The position of a car as a function of time is given by : x = at2 - t3

followed by questions such as,

If a=9, what is the car's position at t=8 sec.?... describe wha",appens
between t=6 sec. and t=9 sec. ... what happens at t=6 sec.?... what
happens when time increases? Analyse the situation when a= 12...

Marina worked on this problem on a spreadsheet although, on occasions, she
complemented this tool with a calculator to perform some operations. She
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demonstrated the ability to pull information from all the resources available to her:
the given equation; the table of values: the graph constructed by her in the
spreadsheet. Although initially she started to use an inappropriate formal rule (v =
d/t) to give the velocity of the car at t=6 (where the graph of position shows a
maximum), after an intervention from the interviewer she realised that there was a
maximum at this point in the graph and therefore she concluded that the velocity
must be zero, applying a physical argument: "it is zero, because it (the car) goes
backwards". This suggests that formal mathematics is a strong structuring resource
for Marina when scientific problem-solving is the ongoing activity. Adam also
demonstrated adaptability in the use of mathematical resources to solve this problem.
He moved between representations, for example using the spreadsheet table to read
off one answer and then estimating the answer to a different question from the graph.
He also switched between resources, e.g. taking approximate readings from the
graph then checking this estimate with arithmetic on a calculator. Because
understanding the visual is an important aspect of science for Adam, he immediately
correctly interpreted the meaning of a maximum in the speed-time graph and did not
attempt to use a more algebraic approach. For Adam, the science (or the graphical
representation) is the dominant structuring resource.

By the final interview Adam had incorporated the spreadsheet as a problem-solving
resource, choosing a spreadsheet to solve a problem where "I was just going to do it
manually, myself, but I decided it would be easier to use a spreadsheet as well". In
this situation it seems that Adam used the spreadsheet to support him in the
construction of a general formula, which he had found difficult to do from his
specific calculations on paper.

The spreadsheet as a mediator between the mathematical model and the
physical situation

Mathematical modelling requires movement between the physical situation being
modelled and the mathematical representations of that model. The format of the
spreadsheet keeps alive the scientific content with the labelling of columns and
graphs, building on the conceptual development of the students. The pure
mathematical (algebraic) approach on the contrary, separates the context and puts a
heavy burden on the mathematical manipulations needed to solve a problem. We
conjecture that the dynamic nature of the spreadsheet feedback provoked more of a
move between the physical situation and the formal model, than similar work with
paper. If students could not make sense of the feedback from the spreadsheet table
and / or graph with respect to their formal or everyday knowledge of the physical
world, they then questioned the formal spreadsheet model which they themselves
had constructed. The fact that they had entered the spreadsheet formulae themselves
may be critical here. In other words constructing a spreadsheet model provokes
movement between. and a re-questioning of, the formal-physical relationship.
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Some concluding remarks

The spreadsheet seems to offer students a new psychological tool (Wertsch, 1991)
for developing mathematical models in science. The computer feedback from the
formal spreadsheet model provoked students to re-examine their assumptions about
the physical situation.

Our work suggests the possibility of influencing mathematical practices within
science subjects, using a modelling approach embedded into a computational
environment such as spreadsheets. The spreadsheet approach helped the Mexican
students to appreciate the graphical and numerical representations and at the same
time helped the UK students to make sense of the algebraic representation of the
models.

diSessa suggests that the top-down approach to science teaching only works if
students already have a well-developed set of relevant primitive experiences from
which to draw upon (diSessa, 1993). The bottom-up approach can result in some
students finding it difficult to make sense of formal algebraic models in science.
White (1993) puts forward an argument for a middle-out approach in which students
are introduced to scientific ideas through causal models introduced at an
intermediate level of abstraction. We suggest that spreadsheet models present an
intermediate level of abstraction which enable students to move between the formal
model and the physical situation.
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PRE-SERVICE TEACHERS' PROBLEM SOLVING STRATEGIES
Margaret Tap lin, University of Hong Kong

This paper explores the approaches to problem solving used by a group of twenty
pre-service primary teachers. Results indicated that students preferred to work with
a narrow range of strategies, predominantly verbal and numerical. There was no
particular approach which contributed more than others to successful outcomes.

The shift towards teaching mathematics through problem solving has arisen
from changes in many technological and social factors (Resnick, 1987, NCTM,
1989) and has been well-documented over the past decade (NCTM, 1989). Resnick
(1987), for example, believes that "school should focus its efforts on preparing
people to be good adaptive learners, so that they can perform effectively when
situations are unpredictable and task demands change" (p.18). As problem-solving
approaches to teaching mathematics are becoming increasingly important, it is
becoming clear that successful implementation is largely dependent upon the ability
of teachers to incorporate such approaches into their programmes. Lester (1994)
highlighted the need to understand more about the teacher's role in teaching through
problem solving if this type of teaching is to be successful.

To teach mathematics effectively, it is necessary for teachers to have
competence in a complex interaction of knowledge domains: knowledge of and
about mathematics itself, about the pedagogy of mathematics, and about the
students (Borko, Eisenhart, Brown, Underhill, Jones and Agard, 1992, Eisenhart,
Borko, Underhill, Brown, Jones and Agard, 1993, Schifter and Fosnot, 1993,
Cooney, 1994, Fernandes and Vale, 1994, Jones, 1995, Swafford, 1995). Applying
the above to mathematical problem solving, it can be seen that to teach successfully
through this medium, teachers need competence in the same three essential
components: knowledge and understanding of what a problem solving approach to
teaching mathematics is (content knowledge), knowledge of and success in using
strategies for solving problems for themselves (procedural knowledge), knowledge
about how children can learn mathematical concepts through problem solving
(content-pedagogical knowledge) as well as a fourth component, belief in the value
of using problem-solving approaches to teaching mathematics. The focus of the
project reported in this paper was one aspect of this model, teachers' procedural
knowledge of problem-solving strategies.

Knowledge of mathematical problem-solving strategies is, in itself, a
combination of several factors: the prob; -in solver's mathematical knowledge,
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knowledge of heuristics, affective factors which influence the way the individual
views problem solving and knowledge of the managerial skills associated with
selecting and implementing appropriate strategies (Schoenfeld, 1985). In addition
to knowing the "discrete skills and procedures"(Lester, 1985, p.43) of problem
solving, problem solvers need to know how to make "[managerial] decisions about
whether to persevere along a possible solution path" (McLeod, 1988, p.138) and
they need to be flexible about changing strategies when the time is appropriate
(Mason, Burton and Stacey, 1987,Taplin, 1994, 1995). If teachers are to guide
their pupils to use these skills, it is first necessary for them to be able to do so
themselves, yet little is known about the extent and quality of primary school
teachers' knowledge in this area.

In addition to learning more about teachers' knowledge of problem-solving
skills, it is important to know whether they have preferences for solving problems
in particular ways. There is evidence that problem solvers do not necessarily all use
the same methods for processing information (Krutetskii, 1976, Shama and
Dreyfus, 1994). The methods they use can include verbal-logical and visual-
pictorial (Krutetskii, 1976), physical/kinaesthetic, ikonic or notational forms, or
various combinations of these (Gardner, 1983, Thomas and Mulligan, 1994).
While Mayer & Sims (1994) found that some students do not need visual prompts
because they can generate their own representations, others have reported the
manipulation of materials (Owens, 1994), drawing diagrams (Resnick and Ford,
1981), or a combination of these (Bishop, 1983) to be important in successful
problem solving. Krutetskii (1976) claimed that students can be equally successful
at mathematics with different correlations between visual-pictorial and verbal-
logical components. Watson, Collis and Campbell (1994) commented on the need
for all of these forms to be used to support instruction in schools. Jacobsen,
Eggen, Kauchak and Dulaney (1985) reported on research fmdings that one of the
characteristics of superior teachers was that they were able to use a variety of
teaching methods to "increase the number of matches between teaching and
learning styles" (p. 176). Thus, more needs to be known about teachers' preferred
methods for problem solving, to gain some insights into whether they are likely to
be compatible with the learning styles of the children they teach.

In an endeavour to learn more about teachers' preferred methods of
processing problem-solving information, and their management strategies, this
study focused on a group of pre-service teachers. With a view to addressing any
emerging gaps in their skills, the following questions were investigated.
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What are the pre-service teachers' most commonly preferred methods for
processing problem-solving information?

Is the use of any particular method more likely to contribute to successful
outcomes than other methods?

Are there patterns in the way the pre-service teachers' manage their use of
strategies, and do these contribute differently to successful outcomes?

Methodology
The data used to explore the above questions were collected as part of a long-

term project to develop and evaluate a computer-assisted tutorial (James and
Tap lin, 1994, Tap lin and James, 1994). The aim of the tutorial was to address
deficiencies in the mathematical knowledge and problem-solving skills of pre-
service teachers, as a supplement to their mathematics education classes. The
tutorial presented basic mathematical knowledge embedded in problem contexts. It
provided series of hints to solve the problems, based on heuristics described by
writers such as Polya (1957). The students were able to select from four categories
of hints: verbal, which gave extended explanations of the hints in sentence form,
numerical, which presented the hints in equation form, visual, which used two-
dimensional diagrams, and concrete, which showed three-dimensional
representations of the hints. It was possible to collect data concerning the students'
preferred methods of processing information, their levels of success, and their
strategy management techniques because the tutorial incorporated a built-in
tracking system which recorded each hint they chose and every attempted answer.

Sample
The pre-service teachers described in this paper were members of a first

year class who had performed poorly (mean score of 4) on a test of twelve
problem tasks which embedded knowledge that they could be expected to teach in
primary schools. A group of 40 students volunteered to trial the use of the
tutorial, which covered six of the more difficult of these problems (Appendix).
They worked on the tutorial over a period of four weeks, for as many sessions and
as long as they chose to, before completing a post-test of parallel problems which
were unfamiliar to them. A random sample of 20 student protocols was selected
for detailed analysis of their problem-solving strategies. Of these twenty students,
four spent two sessions working on the tutorial, five spent three sessions, and ten
did four sessions. One student completed only a single session.
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Results
For the total group of students who completed the tutorial, there was a

significant difference in the mean pre-test and post-test scores (t= 14.17, p<0.001).
There was a similar significant difference for the sample of twenty students
described in this paper (t= 9.775, p<0.001), with a range in post-test increments
from =1 to 5.
Preferred Hint Categories

To identify the most frequently used hints, a count was made of the total
number of hints in each of the four categories used by the 20 students. The data in
Table 1 show the proportions of total hints used by all students, broken down by
the category from which they were selected.

Table 1: Percentage of total hints used by uestion and cate
Problem Problem Problem Problem Problem Problem Mean

1 2 3 4 5 6
Verbal 25.0 44.0 35.8 40.6 30.2 34.4 35.0
Numerical 53.0 24.0 37.7 43.9 30.2 23.7 35.4
Visual 15.6 14.8 13.2 15.4 10.5 16.1 14.3
Concrete 6.3 16.7 13.2 n/a 29.1 25.8 18.22

The results in Table 1 suggest that the majority of the hints which were
selected were verbal or numerical. Visual and concrete hints were used only about
half as much as the other two categories. Verbal hints were used the most on
Problems 2 and 6, numerical hints were used the most on Problems 1, 3 and 4, and
the two were used equally on Problem 5.

To investigate the first research question further, the students' protocols
were analysed to find whether they consistently used particular categories of hints.
In all cases, the students were consistent, across all of their sessions, in using
predominantly the same category or combination of categories (Table 2)

Table 2: Number of students by redominant hint categories

Hints single category combination of two
categories

combination of three
categories

Number of Ss 8 8 4
Mean Number of
Tutorial Problems
Correct

4.1 4.8 5.0

Mean Improvement
Between Pre-Test and
Post-Test

3.6 4.6 2.0

Eight students chose a single category and used it consistently throughout all
of their sessions. Of these, four used verbal, three used numerical and one used
visual. A further eight used a combination of two hint categories: concrete-visual
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(four students), verbal-numerical (three students) and verbal-visual (one. student).
Four students used a combination of three, with two using predominantly
numerical-verbal-visual and two using mostly numerical-verbal-concrete. The data
in Table 2 suggest that all of the above approaches led to similar levels of success
with the tutorial problems. A series of Mann-Whitney U Tests indicated that there
were no significant differences in post-test increments, although the students who
used a single or combination of two categories may have shown a slightly greater
improvement on the post-test than the students who combined three categories.

Management of Hints
The second part of the analysis was to explore patterns in the way the

students approached the problems or managed their use of the strategy hints, and
whether any particular patterns were more likely than others to lead to success.
The data in Table 3 indicate that there were three different ways in which the
students approached the problem set. The first of these, which has been called the
all-problems approach, was one where the students tried all of the problems in each
of their sessions. Four students used this approach. Three of them tried each
problem only once per session, while the fourth had several short attempts (4-7
hints per attempt) at each problem, including nine attempts on the Problems 1 and
2, five on Problem 4, and four on Problem 5. The students who used this approach
had achieved a mean of four correct problems out of six by the time they had
completed the tutorial.

The second management strategy has been called the selective approach,
because the students only attempted selected problems. Again, they mostly worked
continuously on each problem until they got the correct answer, before moving to
the next one, and attempted each problem only once or twice each session. Six
students used this approach. The mean number of correct solutions obtained by
students using this approach was 5.

Ten students used a combination of the two approaches. In the first session,
they attempted all of the problems relatively quickly, with a mean of 10.6 hints per
attempt. In subsequent sessions, they selected a limited number of problems and
spent longer on each of these, with a mean of 17.7 hints. Again, they did not
display a tendency to return to the same problem in a session once they had
abandoned it. Only one student returned to a problem she had abandoned, and then
only once. The students who used this approach had a mean number of 5 correct
solutions during the tutorial. Mann-Whitney U Tests suggest that there were no
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significant differences in mean improvement on post-test scores for students who
used these three approaches.

Table 3: Students' methods of approaching roblems
Approach Number of

students using
approach

Mean number of
hints per attempt

Mean number of
correct solutions
to tutorial
problems

Mean
improvement in
post-test score

All-problems 4 6.8 3.1
Selective 6 20.0 5 4.2
All-
problems/selective

10 10.6/17.7 5 4.0

It was noted that some students showed a tendency to change from one set of

hints to another during their attempts to solve a problem, whereas others would

select one set and use it exclusively, repeating the hints several times if necessary.

Table 4 shows the numbers of students who used each of these management styles.

Two students were excluded from this table because they used the two approaches

equally, and were equally successful using both. From the data presented in Table

4, it can be seen that ten of the students were consistently able to get correct

answers to the problems by repeatedly using the same set of hints. Five

consistently achieved success by changing from one category to another, and

sometimes back again.

Table 4: Management of strategies by outcome

Changed Hint Sets Used Same Set of Hints

Consistently
Successful

Consistently
Unsuccessful

Consistently
Successful

Consistently
Unsuccessful

5 2 10* 1

of ese students were successful using this approach on only 5 of e 6 p ems

Summary and Discussion
This study explored the problem-solving approaches of a group of pre-

service teachers, on the assumption that if we are to help teachers to develop their
potential to present mathematics effectively through problem solving we need to
learn more about their own skills. The data from this small-scale study indicated
that, although the student teachers performed significantly better on a post-test of
parallel problems than they did on a pre-test of the tutorial problems, they tended
to select a method of approach and not change from that through the tutorial.
Numerical and verbal strategies were selected more frequently than visual or
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working primarily with these. Half of the student group attained successful
answers by repeatedly using the same set of strategies, rather than changing from
one set toanother. The results confirmed Krutetskii's (1976) claiin that people can
be equally successful with different combinations of approaches. However, the fact
that students tended to work almost exclusively with a narrow range of strategies,
suggested that they may not have been very flexible in their choice or management
of problem-solving strategies. This may be inconsistent with the findings of other
research, that successful teachers use a wide variety of methods (Jacobsen, Eggen,
Kauchak and Dulaney,1985) and that flexibility should be encouraged in problem
solving (Mason et al., 1987, Tap lin, 1994, 1995). This raises the question of
whether they should be encouraged to develop more flexibility in their own choices
of strategy, so they can offer a broader range of strategies to their students. If
teachers are to be flexible in offering opportunities that cater for all styles of
learning in the classroom, it is probably necessary to encourage them to be more
eclectic in their choice of hints, so they are able to solve problems in a variety of
ways. Further research will explore whether the students can be encouraged to use
a wider range of strategies and if that affects their success in solving the problems.
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Appendix
Problems

Entlr.m1
An article is marked for $68. If a customer is given a discount of 12%, what is the amount paid?
Problem 2
Twelve friends had enough money to buy five Mars Bars between them. If the Mars Bars were divided evenly, how
many would each person get?
auldgml
A concrete mix is made by volume: 3 parts gravel, 2 pans sand and I pan cement. In 12 cubic metres, what is the
volume of (a) cement and (b) sand?
Problem 4
The area of a rectangle is 96 square centimetres and the perimeter is 560 millimetres. Find the length and width of this
shape.

B31111031
At my shack 1 need to build a rectangular tank which will hold 1000 litres of water. What proportions should the tank
be so that it will require the smallest quantity of metal? (Hint a 10cm a 10cm x 10cm cube holds 1 litre of water.)
Etableaft
Suppose a wire is stretched tightly around the Earth. (The radius of the Earth is approximately 6400 km.) If the wire
is cut, its length is increased by 20m, and it is placed back around the Earth so that it is the same distance from the
Earth at every point, could you walk under the wire? How far would the new wire be above the Earth?
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CHILDREN'S REPRESENTATION OF THE COUNTING SEQUENCE
1-100: COGNITIVE STRUCTURAL DEVELOPMENT

Noel Thomas, Charles Sturt University, Bathurst, Australia,

Joanne Mulligan, Macquarie University, Sydney, Australia, and

Gerald A. Goldin, Rutgers University, New Brunswick, NJ, USA

This paper reports further results and analysis from a cross-sectional, empirical
study of children in Grades K-6, and additional high-ability 3rd-6th graders. We
focus on children's understandings of the base ten numeration system, exploring
how their internal representational systems for numbers change through a period of
structural development and become eventually powerful, autonomous systems.

Introduction and Theoretical Perspective
A broad study, conducted in Australia, was designed to explore the relationship
between children's counting, grouping and place value knowledge, and their
structural development of an internal representational system for numbers
associated with the base ten numeration system. Our aim in the overall study is to
achieve a detailed description of children's representational capabilities as evidenced
in a wide range of numeration-related tasks (Thomas, Mulligan & Goldin, 1994;
Thomas & Mulligan, 1995). In our earlier papers we analysed children's external
representations of the numbers from 1-100, discussing the relationship between
internal imagistic representations, dynamic imagery, and structural development of
the number system. We found evidence that children's internal representations of
numbers are often highly imagistic and unconventional. We inferred both static
(fixed) and dynamic (changing or moving) internal representations, noting that
children with high levels of understanding of numeration showed evidence of both
dynamic imagery and structural development in their representations. In this report
we explore further how children develop their understandings of the base ten
numeration system. From their external representations we infer aspects of the
period of structural development that leads ultimately to the children's construction
of powerful, autonomous internal representational systems for numbers.

Examples of children's external physical, pictorial, or notational number
representations have also been described in other recent studies, cited in our earlier
papers. These studies raise the question of how children's representations of the
number system link with their conceptual understandings of numeration, and the
influence of their representational capabilities on how their knowledge is applied in
problem-solving situations. Many children appear unable to represent structures
related to base-ten grouping of number.

The theoretical basis for the present discussion is a model of problem-solving
competency structures and their development based on systems of internal cognitive
representation (Goldin, 1987, 1992; Goldin & Herscovics, 1991). In this model
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many internal systems of representation, of five different kinds, develop over time
through three main stages: (i) an inventive/semiotic stage, in which characters and
configurations in a new system are first given meaning in relation to previously-
constructed representations; (ii) a structural development stage, where the
previously existing system functions as a kind of template on which the new system
is modeled; and (iii) an autonomous stage, where the new system of representation
functions independently of its precursor, and can assume new meanings in new
contexts. We propose that children's internal systems of representation of
numeration go through such stages, and that as the system moves towards becoming
autonomous, the external representations the child produces become more
powerful, more conventional, and more capable of interpretation in a variety of
new contexts.

Representational systems: We focus the discussion of numeration here on
three types of internal systems of representation: verbal/syntactic (using
mathematical vocabulary, developing precision of language, self-reflective
descriptions); imagistic (non-verbal, non-notational mental models such as visual
and kinaesthetic representations); and formal notational (using notation, relating
notation to conceptual understanding, creating new notations). We further analyse
the role of imagery in representation and in the construction of relational
understanding in mathematics (Presmeg, 1986, 1992; Bishop, 1989; Brown &
Wheatley, 1989, 1990; Mason, 1992; Brown & Presmeg, 1993).

Structural development of numerical representation. Numeration involves the
development of an increasingly sophisticated counting scheme and system of
notation for recording the numbers generated. Initially a system of units, the
counting scheme must drive the representation of assemblages partitioned into
groupings of ten. The 'ten', while retaining its signification of ten units, becomes
itself an iterable unit. This in turn may be operated on by the relation 'form a
group of ten', to construct the new unit of 'hundred'. Arrays provide one
conceptualisation of the multiplicative process, and can illustrate recursively the
relations 'multiply by 10', 'multiply by 100', etc. in the numeration system.

Types of imagery: Personal visuo-spatial representations of number (number-
forms) were described long ago by Galton (1880). Seron et al. (1992) suggest that
the number-form is a more accomplished development of a general disposition of
people to encode numbers in a visual way. They conclude that number-forms are
used to code the number sequence, and that the function (if it exists) of this
phenomenon should be examined in number and calculation processing. The
clinical interview studies of students' thinking cited above indicate consistently that
students use imagery in the construction of mathematical meaning. As Mason
suggests, images can be viewed as either eidetic (fully formed from something
presented), or constructed (built up from other images). The meaning-constructing
process continues as the 'mental picture' is described, drawn, compared and
discussed.
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Methodology
Two samples of children (for comparison purposes) were administered task-based
problem-solving interviews. A cross-sectional sample of 166 children in Grades K-
6 were randomly chosen from 8 State schools in the Western Region of New South
Wales (NSW), representing a wide range of mathematical ability. A high-ability
sample consisted of 92 children in Grades 3-6 from 84 country and city schools in
NSW, selected by teachers for participation in a Gifted and Talented program; 79
of these children had been included at the time of our 1994 report.

Interview tasks: The children in the cross-sectional sample were interviewed
individually in two sessions, using 25 tasks designed to explore their understandings
of numeration. The children in the high-ability sample were interviewed
individually once, using selected numeraton and visualization tasks. The numeration
tasks addressed counting; grouping-partitioning; place value; structure of
numeration; and visualization. In one of the visualization tasks children were asked
to close their eyes and to imagine the numbers from one to one hundred, and then
to draw the pictures that they saw in their minds. They were also asked to explain
the image and their drawing. This visualization task was asked first, prior to other
numeration tasks, so that responses could not be influenced by the representations
used by the researcher in other tasks. The interview transcripts and the pictorial
and notational recordings of all the children were analysed, looking for evidence of
representations indicative of the stages described above.

Illustrative Evidence for Cognitive Structural Development
How does the external imagery produced by the child relate to his/her internal
representations of structural features of the numeration system and to the
construction of relational understanding? We conjecture that it is possible to infer
(on a tentative basis) aspects of the child's internal imagistic representations of this
structure, from the external representations observed. The resulting internal
representations are fluid and changing, as evidenced by the transitory nature of
imagery as learning occurs. We further suggest that a child will benefit from
having available a variety of images for use in representing mathematics, so that
salient features of particular imagistic representations can be drawn on in a variety
of situations, and flexibility of thought developed.

The data to this point suggest that the further the representational system has
developed structurally, the more coherent and well-organised will be the external
representation, and the more competent will be the child numerically. Here space
permits just a few illustrative cases. Figs. 1-4 provide examples of how we interpret
the imagery the children produce as evidence for representational acts associated
with various stages of development of their internal systems for numeration.
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Figure 1. Magnus (Grade 3) and Andre (Grade 3):

Evidence for the_ Inventive Semiotic Stage of Construction

Magnus drew a dinosaur with the number 100 on its back. This pictorial
representation appears to reflect the association of the number one hundred' with
something large, an early semiotic act. There is no indication of a counting
sequence, but rather a focus on the part of the question most significant to the child;
at least one aspect of the child's semantic content of 'one hundred' (size) is
represented visually here. Andre drew idiosyncratic figures for each of the
numbers 1 to 10, saying that "one faded, then two came - the people and animals
moving around". In this pictorial representation we find evidence not only of
inventive 'meaning' assigned to numerical symbols, but of an emerging awareness
of sequence. (The drawing is restricted to the part of number 'sequence with which
Andre is familiar, as evidenced by his performance on other tasks).

Fig. 2 shows Naomi's drawing of ten columns of ten circles. We infer from
this ikonic representation that Naomi is developing some structure to her internal
representation of the number sequence. It is a reasonable conjecture that her
external representation has been driven by concrete experiences of grouping objects
into tens, leading to the internal, imagistic capability of representing such
groupings.
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Figure 2. Naomi (Grade 3) and Summer (Grade 3)

Evidence for the Structural Development Stage of Construction

es jJ 4 310



Summer's notational representation also seems to display an attempt to fit the
known linear sequence into an array structure. Groupings in the rows appear to
relate to Summer's notion of the prominent numbers up to twenty, and we detect
some semblance of decades.

Both Naomi and Summer thus show evidence of structural development in
their internal representational systems for the number sequence. Naomi represents
objects as units, while Summer represents numerals; and they have used different
scaffolds (groups of tens, and linear sequence) in their respective visualisations.
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Figure 3. Cassie (Grade 4)

Evidence for Advanced Stage of Strucutral Development

Cassie (Fig. 3) drew an array with the number sequence in rows of ten. She could
describe the notational representation as, "a hundred is ten rows of ten". We infer
that Cassie's internal representation involves both the notion of sequence and the
idea of groupings by ten, including iteration of that idea relating to the notational
system. Edward (Fig. 4a) also showed an array structure in his spontaneous
imagery for the numbers 1 to 100. When Edward was further asked to show the
patterns of ten in the numbers, he too described one hundred as ten tens (Fig. 4b).
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Figure 4a. Edward (Grade 6) Figure 4b. Edward (Grade 6)

Evidence for Advanced Stage of Structural Development
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From the children's performance on other tasks in the study, there is
evidence that Cassie and Edward are able to interpret numerical representations in a
variety of contexts, so that as structured systems of internal, cognitive
representation, they can reasonably be considered to have reached an autonomous
stage of development.

Data taken in just one or two interviews do not permit us to trace the process
of construction of internal representational systems in individual children. But the
variations we observe across different children strongly suggest that such systems
are not fully developed at any one time, but are built up over time. Previously
developed representations may serve to provide students with a framework
(scaffolding, or template) on which new, meaningful representational
configurations can be fit (new knowledge), and new cognitive structures built.
During the many steps that occur in the structural development stage of numeration
systems, we believe that the variety and meaningfulness of the images facilitate
passage to an autonomous representational system of number. While the
representations may be constructed in response to specific tasks, conceptual
understanding of numeration must involve many experiences with the
representation of numerical ideas, across many different tasks, with meaningful
semantic relationships among them.

Imagery and the Learning Process
In our studies it appears that the active processing of images plays an important part
in the development of the child's understanding of numeration. Since images are
built up from words, notations, and other images, the representations do not
become autonomous until the idea makes sense. That is, numeration can be used
itself as a tool in mental thinking, flexibly and independently of any particular
image. To facilitate this children's mental images should be described, drawn,
compared and discussed. As their internal structures are developing, the children's
external representations, both static and dynamic, may not correspond to
conventional mathematics, or be uniform in nature from one child to the next. They
should be expected to reflect each child's unique internal constructions at that time.
Such a range of available images is, in our view, healthy; the images are constructed
so that an internal representation system that 'works' can be built up. Thus the
teaching/learning situation needs to provide opportunities for children to develop
and represent structurally meaningful mathematics.

Conclusions and Limitations
This is a descriptive study. Although it was conducted with a large number of
children, it was not designed or intended as a controlled experiment permitting
immediate generalization. Our methods of inferring aspects of children's internal
representations from their externally produced representations are still exploratory,
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and not yet subject to tests of validity or inter-researcher reliability. And as noted,
it is not a longitudinal investigation.

With these limitations, we believe we continue to find evidence that cognitive
representational systems develop over time. We find behaviors from which
representational acts can be inferred: inventive-semiotic acts of initially assigning
imagistic meanings to or identifying them with mathematical words and symbol-
configurations; structural developmental acts associated with sequences of numbers,
groupings by tens, recursive grouping, and other mathematical structures; and
autonomous acts in which insightful, mathematical meanings are freely and flexibly
found in other systems of representation, distinct from those used initially in
constructing the numeration system.

A longitudinal study of the mathematical development of 22 children in
Grades 3-6 in New Jersey has been conducted at Rutgers University. Task-based
interview data were gathered during 1992-94, and are presently being analyzed
(Goldin et al., 1993). A longitudinal study at Macquarie University of 120
Australian children in Grades 2-3, commencing in 1996, will focus on children's
construction of numerical relationships (Mulligan, Mitchelmore and Outhred, in
progress). We anticipate that these studies will shed further light on the processes
whereby children's internal systems of representation develop, and how such
processes can be inferred from task-based interviews with children.
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COLLEGE STUDENTS' CONCEPTIONS OF VARIABLE

Maria Trigueros, ITAM; Sonia Ursini, CINVESTAV-IPN; A race!! Reyes,ITAM.
Mexico

ABSTRACT
This paper presents the results of a study in which college student's conceptions of variable
were investigated. A decomposition of variable was the basis for the design of a
questionnaire and the qualitative and quantitative analysis of the responses. The results
obtained show that there is a permanence of student's difficulties to deal with variable and
that their proficiency in conceptualising and handling the different aspects of it is far from
what should be desired.

Introduction
Advanced mathematical thinking requires a good understanding of algebra concepts,
particularly that of variable. The processes leading to its construction have been
studied observing and analysing secondary school pupils' work (2), (4), (8). The
difficulties students have with its different manifestations (general number, specific
unknown, variables in functional relationship) have been highlighted and the most
common errors have been stressed (1), (3), (5). Different teaching approaches have
been presented that implicitly suggest a hierarchical order for the acquisition of the
concept of variable (2), (4). Few research, however, has been done to study college
students' conceptions of variable.

It is to be expected that after several high school algebra courses the concept of
variable has been learnt, that is, it is supposed that students should have a fluid
syntactic handling of variable, should be able to distinguish its different
manifestations, and to handle them in a flexible and integrated way. To gain a deeper
understanding of how students learn this concept and of the didactic phenomenology
associated with it, it is important to complement research already done with
secondary school children, with research that looks carefully at more advanced
students conceptions and capability to handle this concept. Our research project aims
at contribitung to till this gap.

In two previous reports (6), (7) we presented the first phases of the study. We
reported there some preliminary results about college students difficulties to interpret
the different variable aspects. We highlighted two important facts: 1) Several
students perceptions of variable remain unchanged along different school levels and
2) Mexican college students have a tendency to interpret the variable as a specific
unknown independently of the nature of the particular problem posed. These results
led us to refine our instruments in order to get a deeper understanding about college
students capability to discriminate and shift between different uses of variable, and to
make explicit connections between them, as well as to compare their conceptions
with secondary school pupils in order to see if there is a significative progress in the
way variable concept is conceived. To accomplish this goal we constructed a
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framework which was used for designing the experiment and for analysing the data
obtained.

In this paper we present a decomposition of the concept of variable in which one
basic assumption is that these different aspects have the same cognitive status . We
show how we used the decomposition in the design of a questionnaire and in the
analysis of students' responses. We comment on some of the characteristics of the
test itself, and present the results of both a quantitative and a qualitative analysis of
the data obtained. We end up with some comments on the didactic phenomenology of
the concept of variable and on the possibility to use the results of this study to design
a teaching strategy that may enable students to deal with it as an integrated
mathematical object.

Theoretical Framework
Our perspective is partially based on the framework proposed by Dubinsky for the
construction of mathematical concepts (9). Dubinsky states that in order to
understand the way students learn mathematics it is necessary to analyse the different
concepts involved to isolate their main components and to give explicit descriptions
of possible relations between them. The product of this analysis is called a genetic
decomposition of the concept. Genetic decompositions can be a useful tool to start
research on students understanding of mathematics and can serve as a guide in the
design of teaching strategies.

Our theoretical framework starts with a decomposition of the concept of variable
shown on the following table which is based, on the one hand on a thorough study of
the concept of variable, and on the other hand on already known student's difficulties
when dealing with this concept. In contrast to a genetic decomposition, the
decomposition of variable we present highlights only those aspects that seem to be
relevant for its construction from the point of view of an expert and considers that all
of them have the same hierarchy. It is important to remark that we do not intend to
establish stages for the learning of this concept, we rather pretend to point out
different features that can be constructed by the students in a non linear way and that
are important in order to get an integrated view of the variable concept.

As any model, this one can be further refined and has no pretension of being unique.
It is supposed, however, to serve as a useful tool in the analysis of the data.

In our decomposition we start from the point of view that the concept of variable
appears in algebra through different facets, for example specific unknown, general
number and variables in functional relationship. These have been shown to be the
most relevant through the literature and in school teaching practices. To construct the
concept of variable implies the capability of integrating all these different aspects and
the possibility of passing from one to another in a flexible way. Furthermore we
consider that in order to work with each one of these aspects it is necessary to be able
to conceptualise, symbolise, interpret and manipulate them.
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The decomposition was used to design a questionnaire in which each item relates to
one particular aspect of variable. It was also used for interpreting students' responses
in order to obtain a global view of their conception of variable. Moreover,
considering that students conceptions are related with the meaning they are getting
for the concept through the school system, we can also get from the analysis of the
data a picture of the main characteristics of the Mexican school system.

DECOMPOSITION OF VARIABLE
Conceptualisation
and Symbolisation

Interpretation Manipulation

Generalised
Number

Conceptualisation of a
general object involved in
general methods or rules
deduced from numeric
and/or geometric patterns
and families of similar
problems; and its
symbolisation.

Interpretation ofa
symbol as a general
object in algebraic
expressions or in general
methods.

Factorise. simplify and
expand to rearrange
expressions.

.S...,,,.....

Specific
Unknown

Conceptualisation of an
unknown in a particular
situation and/or in an
equation and its
symbolisation .

Interpretation ofa
symbol as a specific
unknown in equations in
which it appears once or
more times.

Factorise, simplify,
expand, transpose or
balance an equation to
make a variable the
subject of equation.

Variable in a
Functional
Relationship

Conceptualisation or
symbolisation of functional
relationships starting from a
table or graph or a problem
in natural language.

Interpretation of
correspondence and joint
variation in analytical
expressions, tables and

graphs.

Factorise, simplify,
expand to rearrange an
expression, substitute
values to determine
intervals of variation,
maximum/minimum
values and global
behaviour of the
relationship.

Methodology
The questionnaire consisted of 65 open ended simple items each one isolating as best
as possible one of the aspects of the variable 'decomposition (it will be available
during the presentation). It was applied to 164 Mexican starting college students. The
responses were analysed quantitatively and qualitatively. The quantitative analysis
aimed at validating the instrument and getting an overview of students' capability for
working with different uses of variable. The qualitative analysis aimed at pinpointing
students' ways of conceptualising, interpreting, symbolising and manipulating
different uses of variable in order to obtain a deeper understanding of their variable
conception and to see if the difficulties secondary school pupils usually have, have
been overcome.

Quantitative Analysis of the results
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The quantitative analysis was made in terms of frequencies ofresponses and in terms
of Classical Test Theory. After analysing the questionnaire as a whole, the items
were regrouped in three subtests depending on the particular aspect of variable
tackled and each subtest was analysed separately.

The mean for the global scores for the questionnaire was 33.33, with a standard
deviation of 9.79. The distribution was very near normal with a skew of 0.16 which
indicates abundance of scores in the lower part of the distribution. The reliability
coefficient of 0.89 indicates a good internal consistency of the questionnaire.

The analysis of the responses to the three subtests can be summarised as follows:

Specific
Unknown

Generalised Number Var. in Funct
Relationship

number of questions 19 19 27
mean 10.89 9.66 12.77
std. 2.95 3.9 4.55
skew 0.355 -0.076 0.068
reliability 0.73 0.77 0.79

These results show that the reliability is good for the three subtests and that the
variance is larger for items dealing with variables in functional relationship. The
distribution for the specific unknown subtest is slanted. This indicates that students
had fewer difficulties with the items in this subtest. This result is confirmed by its
lower standard deviation.

Global scores are lower than we might expect for college students who rate well in
other kinds of problematic situations. A graph of the frequency of scores obtained by
the students is shown in figure 2. Moreover, only six questions were answered
correctly by more than 90% of the subjects. Four of these required to recognise
simple numeric or geometric patterns and to show explicitly the following step. The
other two required symbolising variable as specific unknown in linear equations (e.g.
"Write a formula that expresses that an unknown multiplied by 13 is equal to 137").
The percentage of correct answers decreased substantially (3.7% correct answers) for
items involving pattern recognition when the expression of the general subsequent
step was required (e.g. to symbolise the number of elements added to a given pattern
in order to go from step n to step n+1).

All the problems requiring interpretation of variable as specific unknown in simple
quadratic expressions, like for example (x+3)2 =36, were answered correctly by less
than 10% of the students. Moreover, only 7.3% of the students could write a
quadratic equation for solving a word problem.

Items involving the deduction of a rule of correspondence from the analysis of a
tabular record of a functional relationship or the description of a dependent variable
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in terms of the variation of the independent one were answered correctly by only
11% of the students. Students' greater difficulties were related to questions dealing
with intervals of variation. Only 1.7% of the students could identify the range of
variation of the dependent variable given an interval of variation for the dependent
one, when the functional relationship was presented in tabular or graphic form..
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The quantitative analysis put forward two striking results: none of the tested students
could answer correctly the whole questionnaire, and not a single question was
answered correctly by all the students even though all the items of the questionnaire
were simpler than those that use to appear in standard school tests and that all the
students tested rated high on an exam which is equivalent to SAT (Standardised
Academic Test used as entrance examination in USA universities). It is worth
reminding that in Mexico all students have had at least four mandatory algebra
courses before starting college studies.

Given the students capabilities to solve problematic situations in other contexts
different to algebra, this global perspective suggests that high school algebra courses
are not fulfilling their goal. There is no evidence in the results obtained of
significative conceptual changes in terms of the handling of the concept of variable.

Qualitative Analysis of the results

Even if The quantitative analysis of the responses to the questionnaire suggests that
there are not significant differences between college and secondary students, a
qualitative analysis shows that there is some improvement in their capability to
interpret, symbolise and manipulate all the aspects of variable when they face simple
expressions, but the difficulties reappear as soon as their complexity grows.

Overall qualitative results contradict the expectations of proficiency in the capability
to handle of the variable concept for college students, and can be summarised in
terms of the decomposition proposed as follows:
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The majority of students could not determine intervals either from a given
analytical expression of a relationship nor from its tabular or graphic representation.
Abundance of incorrect responses to items asking about the. behaviour of one of the
variables when the other variable changes was also observed. For example to an item
in which a graph was shown, and students were asked to determine the interval in
which the dependent variable decreased, most of the students confounded decreasing
behaviour with negative values; This suggests an improper interpretation of the
global behaviour of the relationship. To another item asking for the values of x
corresponding to the values of y in the interval (3,10) if y=x+3, many of the students
gave only a few positive integers as a response. This evidences a lack of capability to
handle and interpret correspondence and variation.

A tendency to use the equal sign as a linking symbol to connect subsequent steps
in the construction of a correspondence, instead of using it as an equivalence
indicator was also observed. For example to a problem in which they were asked to
find the relationship between the weight and the displacement of an indicator in a
balance, the answer produced by about a half of the students was I kg=4cm; and to an
item asking to analyse a table presenting a time-velocity relationship, the majority
wrote 1 Osec=30m/sec. This suggests that students need an objective way to
appreciate the actual relationships and that they use the equal sign as a tool to analyse
the problem in the search for the correspondence. This seems to be an indicator of
students necessity to perform direct actions on the data involved, instead of being
able to handle them in a more abstract way in order to interpret the correspondence
and joint variation in the expressions.

College students and algebra beginners seem to share the same conception of general
number: This is suggested in the following examples:

College students can translate from natural fanguage to algebraic language when
chains of operations are not needed (e.g. "Write a formula which means: 4 added to
n+5"). When chaining of operations is needed, they tend to name the possible result
of each of its parts before continuing. For example. to answer the item "Write an
expression that says: an unknown number divided by 5 and the result added to 7" the
great majority of students wrote x/5=y+7. This suggests a weakness in the
understanding of the variable as a general number and a need for defining a new
object emanating from the result in order to continue the operations.

The same weakness to interpret the generalised object manifests itself again in the
difficulties students have in using a given symbol to write a known formula. For
example, when asked to write a formula for the perimeter of a square of side a, most
of them wrote P=41, that is, a formula learnt by heart at school. Similar responses are
given by algebra beginners (10).

There is a tendency to interpret the variable in any algebraic expression as a specific
unknown. For instance to an item asking for the values that a can take in the
expression 7+a+a+a+10 more than half of the students made the expression equal to
zero and solved it. This also indicates a difficulty for interpreting a general object.
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Even though students can manipulate, interpret and symbolise the variable as a
specific unknown in simple problems, they have a tendency, similar to that of algebra
beginners, to solve problems through arithmetic procedures. In a very simple age
problem asking to symbolise the equation needed to solve it, the great majority of
students avoided symbolisation and guessed the numeric answer. If the problem is
difficult enough as to make an arithmetic approach impossible, students have
difficulties in identifying the unknown and posing an equation.

An avoidance to perform algebraic manipulation was also found, even though
manipulation techniques are strongly emphasised in Mexican curriculum. Again we
find here another symptom of the lack of comprehension of variables.

A possible explanation for the persistence of students difficulties can be that current
teaching high school practices reinforce each one of the different aspects of variable
separately and in a hierarchical way, stressing their specific manipulation and
transformation rules. However, different uses of variable share the same symbolism,
syntax and manipulative rules. This fact should be taken explicitly into account in
order to avoid possible confusions and misunderstandings.

It has been shown that algebra beginners can deal indistinctly with any of the aspects
of variable. It could be that most of the students' misunderstandings derive from the
fact that there is no effort whatsoever tending to help pupils to distinguish between
the different facets of variable and to integrate them as parts of the same conceptual
entity.

Conclusions
This work proves that research on college students' conceptions is important and
effective in highlighting some aspects of the learning process of the concept of
variable.

One important finding of this study is that although there are some improvements in
the way college students handle variables, there is a persistence of approaches found
for algebra beginners. College students have not a fluid enough syntactic handling of
variable and are nor able to distinguish between its different uses. This suggest that
there is not enough emphasis in conceptualisation and so apparent improvement in
the ways students handle variables might be due to the standard drill and practice
activities and mechanical application of algorithms and memorised rules.

A fluid syntactic handling of variable requires an integral view of this concept, as
well as the capability to distinguish between its different uses. The level of
conceptual development of the subjects of the study, given their age, does not justify
the lack of conceptualisation of variable observed. This suggests a deficient
highschool teaching that does not emphasise conceptualisation.

A synchronised teaching of all the aspects of variable may help in the construction of
this concept as a whole as well as facilitate the distinction of its different uses when
needed. The decomposition of variable presented in this paper allowed to identify
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some important local weaknesses in college students' conceptualisation of variable,
and suggests that a decomposition like this one may serve as a useful guide in the
design of specific teaching strategies.
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SEEING IS REALITY : HOW GRAPHIC CALCULATORS MAY
INFLUENCE THE CONCEPTUALISATION OF LIMITS

L. Trouche, p. Guin
ERES, Universite Montpellier 2, FRANCE.

Abstract : Contrary to an accepted opinion - graphic calculators are tools for
teaching - we point out that they are continuously used by students, but not very
taken into account by the french educational system. However, graphic calculators
have a strong influence on conceptualisation of the fundamental notion of limit. This
influence is particularly strong because there is no explicit definition of limit in
french secondary mathematics curriculum. Without definition, the image - of the
calculator is the master. Therefore, the use of a graphic calculator may induce
procedures" linked to more primitive conceptions of limits. To tackle this problem
requires a change in curriculum and a reflective integration of calculators in
mathematics courses.

I Introduction
In [Espinoza & al 95] one can find an analysis about the concept of limit in the

spanish secondary educational system which points out activities - highly valued in
cognitive education researches - which are lacking in the teaching system (lack of
elementary reading technique to read a graph, no relationship between continuous
and discrete,...). These results are nowadays completely also avalaible for the french
educational system. Morever, about infinitesimal calculus teaching, various questions
arise in France. Curriculum was strongly modified : any definition of limit (even
unformalized) has completely disappeared from secondary teaching system, even
though various exercises require to handle this notion. There is no assessment
concerning the outcomes of these changes [Artigue 93]. The official comments
attached to curricula lay stress on the elaboration of experimental processes, in which
calculus tools should play a significant role. As graphic calculators are alloWed in
secondary examinations, therefore students continuously use them, even though they
are not really taken into account by teachers in classrooms. In these conditions, how
students elaborate their own knowledge'?

II Objective

This study focuses on the influence of graphic calculators on the students
conceptualisations of limits in scientific classrooms (high school level). The main
hypothesis is that graphic calculators may induce illusions on their possibilities
relative to the two types'of infinity : the indetinitly extension and the infinite number
of points in an interval [Garancon et al 93]. Indeed, results of fig I and fig 2 point out

4 - 323



the fact that calculators are in practice ignored by teachers in the french educational
system [Trouche 92] :

How have you learnt to use
your graphic calculator ?

50

30

10 I I a ma 11 I IA

Yes

Manipulating With pals

A little

With directions
for use

No

ith the teacher

fa No answer

Fig. 1 ( 70 students 16 / 17- year old )

What change brought about by the generalization
of graphic calculators ?

30

25

20 -

15 :

10 :

5

o -:'
Should curricula be

modified ?
Have courses been Specific exercises

modified ? given ?

Yes No No answer

Fig. 2 ( 33 teachers )
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At the moment when students discover infinitesimal calculus, they think that
their graphic calculator can "show" the two types of infinity. Which implications on
students'conceptions ?

III Theoretical framework
One one hand, various studies relative to the difficulties in teaching the

concept of limit without calculators were carried out : epistemological obstacles
[Sierpinska 85], obstacles and conceptions [Cornu 92], and models expressed by
students about the convergence of numerical sequences. [Robert 82]. In [Tall &
Vinner 81], the research deals with the conceptualisation of limit. On the other hand,
other studies [Hillel 95, Artigue 95] focus on problems which often are also
available for graphical calculators - linked to the use of Computer Algebra Systems,
but not specifically about the concept of limit. Recently, in [Monaghan & al 94],
there was a report on limit conceptions of students who have learnt calculus with the
aid of a Computer Algebra System.

' Whe are aiming to begin an anologous study with graphical calculators, which
are not at all assumed by french teachers, therefore the context is completely
modified. E. Goldenberg [Goldenberg 87] has already noticed that "students often
misinterpreted what they saw in graphic representations of functions. Left alone to
experiment, they could induce rules that were wrong... How do misconceptions
distort the information that students glean from the graph?". In Goldenbergs' report, a
classification was begun concerning the sources of confusions in the perception and
interpretation of graphs.

Our study concerns the limit of real functions at infinity. We have elaborated a
classification taking into account results previously recalled for analysing the link
between conceptions, students procedures and their use of graphic calculators. We
have pointed out four conceptions of a limit :

* a "primitive" conception : a function whose limit is infinite is a function
which takes large values for large values of the variable (properties noticed for
example in the case of power functions).

* a "monotonic" conception : a function whose limit is infinite is an increasing
function (or increasing function after some value of the variable) : "To become very
large, it must always increase..."

* a "no upper - bounded" conception : a function whose limit is infinite is a
function which may take values greater than every fixed real. This conception
frequently encountered in the first year of university is linked to the confusion
between necessary and sufficient condition : a function whose limit is infinite has no
"ceiling" (but a function which has no "ceiling" has not necessarily an infinite
limit...).
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* Finally, the "expert's" conception that depends on a real understanding of the
mathematical definition.

It is clear that these "conceptions" are models of appropriate students
behaviours, then some behaviours may be interpreted in terms of intermediate
conceptions.

IV Methodology

Our hypothesis is that no mastered manipulations of the graphic calculator will
lead to back up the two first conceptions described above:

* The primitive conception : it is attractive and easy with a calculator to seek
various values of f(x) when x is large, the calculus is immediate, then the limit of the
function is really +00 . A function whose limit is +0. when x tends towards +00 is a
function which takes large values for x large.

* The monotonic conception : the screen of the calculator has a highly
productive character. What is out of the screen seems to behave as a continuation of
the screen itself. As [Garancon et al 93], "we observed an initial tendency to rely on
the appearance of graphs and to extrapolate from what was visible ". Then the study
of the function on a "large enough interval will give students an idea of the global
behaviour of the function. The global aspect of the curve will be supposed to give, or
induce, the limit at the boundaries of the screen. Then, in this case, the study of the
limit of a function amounts to the study of its variations. For proving that a function
has +.0 as limit, it is really sufficient to prove that it is an increasing function...

To valid this hypothesis, a questionnaire was designed to elicit students
conceptions of limit of a function at infinity. We have chosen students in last year of
secondary school (100 students 17 / 18 year old) and in first year of university (100
students 18 / 19 year - old) because it is the first moment when they learn aformal
definition of the limit : it is interesting to observe the impact of this fact on the
identified conceptions. Only half part of these students had the possibility to use
calculators. We report on a part of this questionnaire :

Questions about definitions

Q1 : What means lim f(x) = +co ?
X -14-o.

: How can you explain it to a younger student '?

Questions about procedures

Q3 : Which methods do you know to prove that a function has +00 as limit when the
variable tends towards infinity ?
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Questions about exercises on limits with an explicitation of used procedures

Q4 : Have the following functions a limit at infinity ?

LJ Yes El

Justify theoretically your answer.

Illustrate it with a fitted diagram.

(There was about ten "problematic" functions as, for example, In x + 10 sin x).

no I don't know

V Preliminary . Results
The analysis of responses enables us to valid the previously displayed

conceptions. We choose answers relative to the question Q2 which are supposed to

faithfully translate the intimate students' conceptions :

Secondary
school University

No answer 11 16

Tautology 0 8

Primitive conception 30 29

Monotonic conception 52 27

No upper bounded conception 7 14

Expert conception 0 6

Fig. 3 (rate per cent)

There is an improvement between secondary school and university which still
raises various questions (students at university know the expert's definition, but they.
not know how to .translate it for a younger student, then they come back to a
primitive definition). We have likewise found this improvement in the described
procedures : we notice more procedures linked to variations of functions among
monotonic conceptions, and more procedures linked to strategy of finding a lower
function among no upper - bounded conceptions.

Deeper differences will appear with the use of calculators in the study of the
limit at infinity of , for example, In x + 10 sin x. Here is the share-out of the answers
no.,

:

With calculator Without calculator
Secondary school 25 0
University 20 0
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There is a real effect of calculators on these answersClearly, the graph of the
function produced by the calculator is rather disturbing for a "novice :

YI Bin X+10sin X
Yz=
Vz=
Ys=
Vs=
Ys=
Y7=

However, the effects of calculators are nor restricted to these points. There is a
significant difference between procedures used with (or without) calculators :

* with calculator : students usually refer to variations of correspondent
functions, with ambiguous sentences as " the function In increases faster that the
function sinus ;

* without calculator : students more often refer to strategies based on a
function lower than the given function to prove the result (at the two studied levels).

We simultaneously observe differences in gestures made in.the course of the
action according to the possibility to use a calculator or not :

* with calculator : students begin to watch the graphic representation provided
by the screen. They initiate successive zooms as the photographer of Blow up
[Antonioni 86] trying to extract from the negative the.required information... They
attempt to deduce from the "profile" of the curve informations about its behaviour
towards infinity. We think at the obstacle of first information [Bachelard 38]. Some
students proceed in an analogous manner for the function x 2 + sin x. The observation
of the screen points out that it is an increasing function on R+. Then, they will prove
it by derivation., convinced that they will have established that the limit is

*without calculator : students work on the algebraic form, trying to reduce it at
known expressions by factorization, or to compare it to a lower function whose limit
is infinite. Then the reference is here the course.

From this example, we better understand the gap between procedures used by
students with calculators (or not). Without calculators, references are more actual,
inserted in a course context of recently acquired knowledge. With calculators,
references are deeper limited to personal experiences of the student, to images which
already exist fir a long time.

In this way, the use of calculators induces to reinforce primitive conceptions
about the limit notion. However, one have to notice that after a more elaborated
analysis, the situation is more complicated : some students use calculators just as an
auxiliary tool, or as a last resort. Other students know how to combine different
available sources of information (course, calculator, theoretical calculus). But for the
majority of students, the graphic calculator is the first and often the more influent,
mullet in ws the only tea), of investigation.
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VI Discussion : instructional implications

Is it possible to avoid these negative aspects in the influence of calculators ?

There is an unavoidable gap between "real" mathematics and their image
provided by calculators (as well at the graphic level than at the numerical one). For a
calculator every number has a successor, on a graphic screen one can move from
point to point. There is an unquestionable discretisation of the continuum, rather
disturbing for the student. The social role of images has been analysed in 1Debray
921: images of screens are more than a representation of the reality (rather a display
of it) : they acquire an autonomy in comparison with the corresponding algebraic
form. This "graphic presentation" is supposed to summarize all the properties of the
function, and therefore must give answers relative to infinity. However, only
variations or rather the amplitude of variations can be watched : feeling becomes
proof..

For all these reasons, teachers must hold a place in these process, they have to
make explicit instructional interventions taking upon themselves an important
responsibility of "image" education. It means that first they have to integrate graphic
calculators as tool of course and to organize, when it is possible, backward and
forward motions between calculators, theoretical results, and calculus by hand. Then,
there are implications in the teachers' behaviour (to organize the comparison between
the blackboard and the screen with a overhead-calculator, setting specific problem
situations to facilitate some reorganization of the work) and in providing exercises
which have to integrate tools of calculus as an aid to conjecture, to solve and to
check. As in the experiment with graphical calculators described in [Resnick & al
941, students will have the possibility to construct very rich representations and to
use it in a highly flexible manner in problem solving.

On the other hand, one have to lay stress on the fact that it is dangerous to
introduce some kinds of "UFO" in curricula as limit of functions which will be
defined further at university. We have pointed out an obstacle of a didactic nature
(that is linked to the choices and charateristics of the educational system) : we
cannot avoid that these objects will take sense from the available tools as graphic
calculators.

VII Perspectives

It is utopian to think that a technical progress would allow us to solve problems
brought about the integration of calculus tools in the mathematical course. For
example, the new generation of.calculators (as TI 92) has a Computer Algebra
System and offers the possibility to make exact calculus, to seek limits of functions
(the keyboard has a key Certainly, students will not he mistaken on limit
calculus. But will they have understood what is a function with such a behaviour
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towards the infinity ? What conceptions will go stronger ? What new obstacles will
be created ? The problem is just shifted... How will evolve students' behaviour in
front of these new materials ? We carry on this study with an experiment in a
classroom where students have TI 92 at ones disposal.
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CHILDREN'S MISCONCEPTIONS ABOUT THE INDEPENDENCE OF
RANDOM GENERATORS

John M. Truran

University of Adelaide, Australia

The most common erroneous heuristic reported for predicting outcomes from two-
outcome random generators is that of negative recency. This paper uses a theoretical
model to identify other heuristics, such as the heuristic of positive recency, and heur-
istics based either on previous predictions or on the success or failure of previous
predictions. It reports research which shows that many of these are used by children,
and that the heuristic used may also reflect the asymmetry of the random generator.

A Summary of Factors Known to Influence Understanding of Independence

Most research on independence has asked subjects to predict outcomes, usually from
a generator known to produce only two outcomes. Children's responses tend to be
context specific. They depend on, inter alia, age (Turner, 1979; Green, 1982), the
level of concreteness of the random generator (Zaleska, 1974), the order in which the
random generators are operated (Zaleska, 1974; Fischbein, Nello & Marino, 1991),
the way in which the questions are posed (Jones, 1974, pp. 280 - 283) and the amount
of information which children have about the random generator (Turner, 1979).

Reported research has found that subjects tend to give responses which are influ-
enced by previous outcomes (Cohen, 1979). Responses may alternate (Green, 1982),
may be influenced by some form of negative recency heuristic (Fischbein, 1975, p.
59) or may be using a logical, but overloaded, inductive Baconian approach (Brain-
erd, 1981, p. 500). But it is also known that different circumstances may influence the
popularity of the negative recency heuristic (Turner, 1979) and that the constant pre-
dictions required by a Pascalian strategy are superficially so much at odds with the
randomness of the actual sequence that many subjects become uncomfortable with
such an approach and move to predicting a "representative sequence" (Tversky &
Kahneman, 1974) to reduce stress (Goodnow, 1955; Zaleska, 1974). Some students
may presume that a representative sequence is what is in fact required (Zaleska &
Askevis-Leherpeux, 1976).

In this paper I describe heuristics used by non-Pascalian thinkers for making
predictions which are not based on previous outcomes.

Methodology

Interviews were conducted with 32 subjects, four males and four females from each
of Years 4, 6, 8, 10 in South Australian schools. Details of the methodology are
described in Truran (1994). After two preliminary 'drunken walk' games using a
translucent container holding two balls of one colour and one of another, subjects
were asked to predict the results of nine successive random draws from this
container. No rewards were offered. The colours were chosen to minimise any influ-
ence of children's colour preferences; the results here have been standardised to an
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urn containing two green balls (G) and one blue (B). (The aide-memoire 'G for Good
and B for Bad', may help the reader to recall that G is the more likely colour.) For
variety the questions asked before each draw varied, but all were variations of:

Which colour is most [sic] likely to come out?
If I asked you which colour you will draw out which would be the best

[sic] colour to guess?
Which colour do you expect to come out this time?
Which colour do you think you will take out this time? Why?

There was no evidence that children saw these questions as differing significantly in
meaning. Nine draws sometimes became a little boring, especially with a long run of
Gs, so this predictive questioning was sometimes omitted, but all subjects wrote
down their prediction before every draw.

All draws were made by the child, who also wrote down the result next to each pre-
diction and was then usually asked to comment the outcome using questions like:

Were you surprised?
Does that mean you were wrong?
Why did this happen?
Can you make it come out blue?
Did you expect this to happen?
Will you be right every time?

Again, questions were not asked on every occasion. For example, after three success-
ful predictions of G there was little point in asking for further comment on a fourth
success. Outcomes could not be pre-determined, so the protocol had to be flexible.

The preliminary games played before this protocol was administered provided each
subject with different experiences, some of which were counter-intuitive. The out-
comes of the nine draws were also usually different. Such inevitable variations and
the small number of interviews conducted mean that formal statistical analysis of the
results is inappropriate. However, the sample is large enough to suggest trends
warranting further investigation. All experiences and responses of the subjects have
been tabulated in detail. There is only space here for results to be summarised. The
analysis below is unashamedly intuitive, but it rests on a process which allows unus-
ual experiences to be readily identified.

Several aspects of the analysis require comment. Identifying heuristics is a statistical
process. An heuristic might be said to exist if the probability that Situation A was
followed by Response X is greater than some value pre-determined on subjective
grounds. The existence of an heuristic does not imply a causal connection between a
Situation and a Response, nor does it imply that the subject is conscious of the
relation. The work reported here is based on data collected from children with a very
wide age-range. Such lumping might not be seen as appropriate in a more refined
experiment. But I would argue that it is appropriate in this preliminary study because
the whole experiment showed that maturity of thought was not simply related to age.
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It was anticipated that subjects thinking in a Pascalian way would predict G consist-
ently and could be presumed to share the received subjective view that the random
trials were independent. It was anticipated that the responses of Baconian thinkers
would indicate what factors they saw as contributing to the dependence of the trials.

Children's Initial Predictions

All subjects, except two in Year 4, predicted that the first ball drawn would be G. TD
(Year 4, M, 9:3) expressed several times a very strong liking for B so it is likely that
affective matters influenced his choice. While he was aware of the asymmetry he saw
the presence of 2G as "cheating". On the other hand, MW (Year 4, F, 8:7) did not
seem to be aware that the asymmetric composition of the urn was relevant. She made
no comment on the relative numbers in the urn, but made comments like "Because it
looks like it's the green's turn today" and "It looks like it's green before blue".

These results provide some support for Turner's (1979) suggestion that it is not until a
child is about 9 years old that he or she appreciates the significance of such asym-
metry. It will be argued below that once this appreciation has developed the heuristics
adopted are likely to be influenced by this asymmetry.

Existence of Pascalian Responses

Surprisingly, five subjects, one in Year 4, one in Year 6, two in Year 8 and one in
Year 10, consistently predicted G for all 9 draws even though all of these had at least
two of their predictions refuted during the experiment. Five of the predictions of ML
(Year 4, M, 8:10) were unsuccessful. When asked why he had chosen G he replied,
"Same as the other questions, cos there's 2 Gs." When asked whether he could make
the result a G he replied in the negative "because it's hard to choose cos I know where
it is at first, but when you shake it up it's hard to find them".

The other subjects gave similar, though more mature responses; all showed a clear
awareness that G was the more likely colour, but that B would sometimes occur. LH
(Year 8, M, 13:1) explained the occurrence of a B by saying, "Just luck of the draw.
You've got 33% chance of a B to come out or a G to come out because you've got
double G and one B and you've got more chance of getting a G but you can get a B."

So, under the conditions of this experiment, Pascalian responses indicating an
understanding of the independence of random trials may occur as early as Year 4, but
are not common even in Year 10. We turn now to children's non-Pascalian heuristics.

Were the Subjects Using an Heuristic of Alternating Responses?

Examination of all the transcripts shows that the answer to this question is
unequivocally "No". As mentioned above, almost all subjects were aware of the
asymmetry of the random generator, and showed some understanding that this
affected each outcome. But even the two exceptions, MW and TD, did not use an
alternating response heuristic. As far as I can tell researchers reporting the use of this
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heuristic have been working with two-outcome random generators which are either
symmetric or whose rule is unknown to the subject.

What Factors eould Influence Subjects' Predictions?

In this protocol, after five draws from the urn, each subject would have written in
front of him or her a set of results laid out as in the example in Table 1. In making the
sixth prediction the subject could make use of many different components of the
table. Some of these possibilities will be enumerated, and then used to show that the
heuristics used by subjects are more diverse than might be apparent at first sight.

Prediction Actual

Table 1

The sixth prediction might be statistically based on some or all of the data in the
'Actual' column. This would imply the use of some form of 'recency heuristic'. A
'negative recency heuristic' exists whenthe probability of predicting an event
[decreases] as a consequence of the event having occurred repeatedly on previous
trials" (Fischbein, 1975, p. 59). For example, after 6G the subject is less likely to
predict a B than after just 1G. Fischbein's term 'consequence' implies causality; a
preferable definition would be "the probability of predicting an event decreases as the
number of previous occurrences of the event increases".

Equally, the sixth prediction might be statistically based on some or all of the data in
the 'Prediction' column. This is like a recency heuristic, but follows predictions rather
than outcomes, so is necessary to define a new term: 'recency heuristic for predict-
ions'. Alternatively, the sixth prediction might be based on some or all of the
confirmations or refutations of the previous predictions. In the example given, the
second, third and fourth predictions were confirmed, and the other two refuted.
Finally, given that B and G are not equally likely, the heuristics might be influenced
by the asymmetry of the outcomes. If every entry in the table were replaced by its
opposite colour the heuristic adopted might or might not be the same.

Were the Subjects Using an Heuristic of Negative Recency ?

Some subjects certainly used a negative recency heuristic. For example, AP (Year 8,
F, 13:8) changed from predicting G to predicting B after four of her six G predictions
had been refuted by a B outcome because she "[seemed] to be getting B all the time".
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So the data may be examined to look for relationships between the length of run and
the predictions made. In this paper "run" is defined so that the sequence GGBGGG
contains runs of 1B, 2G and 3G). Other definitions are possible, e.g., AP's reasoning
quoted above, but this one has been chosen because it is simple and therefore
appropriate: to a preliminary investigation. In the analysis which follows the five sub-
jects who were probably using a Pascalian strategy are not included.

All subjects' predictions after various lengths of runs of B and G have been tabulated.
The percentages of no change in prediction, changes from G to B, and changes from
B to G for after each run have been calculated. Because runs are cumulative (i.e., a
run of three contains runs of two and one) there are far more examples of short runs
than of long ones. Cases with less than 10 examples are excluded from the analysis
unless specifically stated otherwise.

The probability that a subject will make a change of prediction from G to B is about
22% (range 18 - 25) for runs of between 1G and 4G. Similarly, the probability that a
subject will make a change of prediction from B to G is about 25% (range 22 - 29)
for runs of between 1G and 4G. Finally , the probability that a subject will make no
change of prediction is about 53% (range 47 - 60) for runs of between 1G and 4G.

But of the 27 runs of 1B, 339'o were followed by a change in prediction from G to B,
33% from B to G, and 33% by no change. Of the 9 runs of 2B, 67% were followed by
a change in prediction from G to B, 22% from B to G, and 11% by no change.

It can be seen that after runs of G there is no evidence of the use of a negative recen-
cy heuristic. Subjects are just as likely to change from G to B or from B to G after a
moderately long run of Gs as after a short run. But for runs of B there is some evid-
ence that a positive recency heuristic may be being used for changes from G to B.

So these figures do not support the thesis that a negative recency heuristic is used for
prediction in these circumstances, and suggest that sometimes a positive recency
heuristic may be employed. The data suggest that the choice of heuristic may be
influenced by the asymmetry of the colours so this possibility will be examined next.

Does Asymmetry Influence the Heuristics Employed?

There may be a tendency for subjects to leap on a bandwagon when an unexpected
sequence of results occurs. After short and moderately long runs of G the difference
in the relative frequency of changes from B to G and from G to B is very small. The
difference in changes after a run of 1 B is very small, but after a run of 2B 67% of the
piedictions were a change from G to B, while only 22% were from B to G. In spite of
the small numbers involved, the difference is striking.

M well as comparing the relative frequency of the direction of changes after different
runs of a given colour, it is also possible to compare changes after the same length of
run of different colours. Occurrence of a single B was 33% likely to be followed by a
change:from G to.B., whereas occurrence of a single G was only 23% likely to be
followed bya.dririge from B to G. Even more strongly, a run of 2 Bs was 67% likely
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to be followed by a change from G to B, whereas a run of 2 Gs was only 18% likely
to be followed by a change from G to B. This difference seems important even
though there were only 9 runs of 2B. So for some subjects occurrence of the less
likely outcome is more likely to be followed by a change in prediction towards the
less likely outcome than is the case for occurrences of the more likely outcome.

Further evidence of colour asymmetry influencing heuristics may be found by
comparing the probabilities of there being no change in prediction after various runs
of G with those after runs of B. The lowest figure for no change after a run of Gs is
47%, and the highest figure for no change after a run of Bs is 33%.

So there is strong evidence that colour asymmetry influences subjects' heuristics. But
other factors also may be at work. For example, it is possible that subjects may be
using a negative recency heuristic based, not on the actual outcomes of the trials, but
on their predictions.

Does the Negative Recency Heuristic Operate with the Predictions?

Subjects predicted 116 runs of G. Of the runs of length 1 or 2, 33% were followed by
a change to a prediction of B. Of the runs of length 3 or 4, 45% were followed by
change, and 50% of longer runs were followed by change. Of the 51 predicted runs of
B, 80% of runs of 1 were followed by change and 88% of the 9 cases of runs of 2.

The percentage differences here are small, but, in terms of changing from G to B,
there is more evidence that students are applying the negative recency heuristic to
their predictions, than to the outcomes. In some cases this assertion can be supported
by individuals' comments. JM (Year 8, F, 13:7) changed after 6 predictions of G of
which the third was refuted by a B outcome "because it's been G all the time and its
due for a change". Similarly, JW (Year 10, F, 15:3) changed after eight predictions of
G of which the first two were refuted because "I only picked B because it's been all
Gs before". Predictions and outcomes were written down by the subjects and access-
ible to them, so there is strong evidence that previous predictions were sometimes
used as a basis for a next prediction. and perhaps using a negative recency heuristic.

But it is also possible that subjects' predictions were related to the conformity of their
predictions with actual outcomes.

Were the Subjects Using an Heuristic Related to Refutations?

Goodnow (1958, p. 115) observed that "[for most individuals, correct prediction of
an infrequent event is not just one more correct prediction but a success worth several
correct predictions of the easy-to-get more frequent alternative". We consider first
whether just one refutation of a prediction has any influence on the next prediction.

A refuted prediction of G was 25% likely to be followed by a change of prediction to
B. But equally a confirmed prediction of G was 20% likely to be followed by a
change of prediction to B. On the other hand, a refuted prediction of B was 71% like-
ly to be followed by a change of prediction to G whereas a confirmed prediction of B
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was 75% likely to be followed by a change of prediction to G. The figure of 71% is
deflated in this sample by TD's animistic fixation on B mentioned above.

Colour asymmetry remains important here, with a prediction of B being about three
times as likely to be followed by a changed prediction as is a prediction of G. But
refutation or confirmation of a single prediction of either B or G is a poor predictor of
whether the subject would change his or her prediction for the next draw. But when
several refutations are considered the situation changes strikingly.

There were 39 changes of prediction from B to G. Of these 9 (23%) occurred after a
confirmed prediction of B, 11 (28%) after exactly one refuted prediction of B and 19
(49%) after 2 or more refuted predictions of B. Similarly, there were 39 changes of
prediction from G to B. Of these 25 (64%) occurred after a confirmed prediction of
G, 8 (21%) after exactly one refuted prediction of G and 6 (15%) after 2 or more
refuted predictions of G.

These differences are striking and support Goodnow's assertion. Confirmed
prediction of G predicts a change to B much better than confirmed prediction of B
predicts a change to G. Refutation of two B predictions predicts of change much
better than refutation of two G predictions.

Discussion

The protocol used has weaknesses, but it does bring out some points clearly. It
allowed almost all children to respond in ways which showed that they were well
aware of the asymmetry of the random generator.

It also showed that a negative recency heuristic is less commonly used than has been
suggested and revealed other possible heuristics. Predictions do not seem to be
affected by G outcomes, but there may have be a positive recency heuristic employed
with respect to B outcomes. A negative recency heuristic may be used with respect to
predictions of G, rather than outcomes. While a single refutation of any kind was a
poor predictor of change for the next prediction, two refutations of a B prediction
were a very good predictor of a 'change to a G prediction. Surprisingly, a confirmed
prediction of G was also a good predictor of change.

Some of, the heuristics observed here have not been observed by other workers.
Perhaps this is because protocol like the one used here are rarely used. They are
labour intensive, unable to ensure constant experiences for all subjects, and cannot
easily be extended to large numbers of draws.

The major weakness of the protocol is that it does not make quite clear whether the
subject is asked to make predictions which will match the actual outcome, or try to
predict .a "typical" outcome, or try to maximise rewards under pay-off conditions
which are not explicitly stated. There is evidence that many subjects were trying to
do all three. JW's decision, quoted above, to change in order to include one B in her
sequence is strong evidence that she felt that she was required to produce a "typical"
sequence. The protocol would be of greater benefit if it made clear to the subjects that
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a strategy which maximises rewards is what is required. Teigen (1983) has shown
that such a modification can be easily implemented.

Independence of random generators is an important statistical idea which it is desir-
able for children to develop. This paper has shown that they develop many erroneous
intuitions, and points to issues which need to b e addressed in classroom teaching.
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CHILDREN'S USE OF A REPRESENTATIVENESS
HEURISTIC

Kathleen M Truran

University of Adelaide, Australia

This paper describes an investigation by feigen into the use of a repress
entativeness heuristic by adults and a replication with young children.of
Teigen's investigation. A comparison of the data from both studies indic
ates that in two cases a similar heuristic appears to be used by both adults
and children, in a third the responses are very different. This raises a
question about which heuristics and 'biases children may use and how
these differ from those of adults.

The Representativeness Heuristic
The thesis of Tversky & Kahneman (1982) is that people who are stat-
istically naive make estimates for the likelihood of events by using a
heuristic which they called representativeness. An example is the belief
that if a coin is tossed and comes down heads eight times in a row the next
toss must produce a tail. This belief implies that such a result would
produce a pattern seen as being more representative than nine heads.
Occurrences of permutations and combinations are also often interpreted
by the use of a representativeness heuristic, with the sequence HTHTTH
viewed as more likely than either HHHTIT or HHHHTH. While some-
times this heuristic works, well, an exclusive reliance on it often leads to
inappropriate decisions made in mathematics and daily life. It is im-
portant that such misconceptions are replaced by more appropriate
thought processes.

Focus of Study
Teigen (1983) carried out an investigation involving tertiary students who
answered three questions which he devised to test his hypothesis that a re-
presentativeness heuristic is used when people are asked to predict 'the
outcome of a single, random event. As a result Teigen claimed that when
answering such questions most people make their answers look spontan-
eous as well as being representative of the population. Teigen's claim is
related to anecdotal evidence which suggests that when people are asked
to choose a number between one and ten, five is avoided because it is too
obviously the middle number, and the most frequent answer given is
seven.

Teigen's three questions seemedto be easily understood, to investigate
different types of responses and heuristics, and appropriate for use in
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both group and individual situations, so I decided to investigate the
responses of primary school children to these same questions.

Teigen's Research
At the beginning of a scheduled lecture, the tertiary students were asked
the following three questions:

QI These twelve tickets numbered one to twelve are folded and put
into this container. There is only one ticket for each number, so
all tickets have an equal chance to be drawn. Still, make a guess
and write down which number you think will be drawn.

Teigen claimed that these students knew that all outcomes were equally
probable and understood elements of probability; even so, the majority of
students selected the central values (5, 6, 7, and 8). Teigen claimed that
this indicated the use of a representativeness heuristic.

Q2 These six red tickets numbered one to six and these blue tickets
numbered seven to twelve are folded and put into this container.
There is only one ticket for each number, so all tickets have an
equal chance to be drawn. Still, make a guess and write down
which number you think will be drawn.

When the tickets were divided into two groups Teigen observed a differ-
ent pattern of responses. 'The central tendency had disappeared ...[,]
subjects seemed rather to prefer one of the middle blue numbers (3. or 5),
or a representative red one (9)'.

Q3 These twelve tickets numbered one to twelve are folded and put
into this container. There is only one ticket for each number, so
all tickets have an equal chance to be drawn. Still, make a guess
and write down which number you think will be the last
number to be drawn [from the container] after the first eleven
have been drawn one by one.

Teigen observed that 'To guess the last number drawn from a box seems
to be rather different from guessing the first one. The distribution of
guesses is by now almost rectangular, with extreme values quite as
frequently chosen as more central ones.'

Teigen's sequence of experiments ...'were designed as a first attempt to
clarify whether a representativeness heuristic applies when subjects are
asked to predict simple, equally probable random events.' He used a
'show of hands' to indicate the choices made. This method is not the most
effective for collecting a set of data of this size, and Teigen himself sug-
gested that 'some answers, especially the most frequent alternatives might
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have been lost.' He also questioned whether the same students part-
icipating in more than one question might have influenced their answers
but added, '[S]till the results strongly suggest that superficial structural
and procedural differences will lead to different patterns of guesses.'

Methodology

The questions used by Teigen were replicated in this study, which in-
volved about 280 students in Years 5 and 7, and 28 in Year 3, all from
six co-educational schools in lower, middle and upper socio-economic
regions.

The testing procedure differed from that of Teigen. Years 5 and 7 stud-
ents were questioned in class-sized groups of about 30, and wrote their
responses onto formal recording sheets. A random selection of six from
each class was later interviewed individually, as were all Year 3 students.
While each question was being asked raffle-tickets and urns as
appropriate were demonstrated to the students.

In the first class an attempt to use Teigen's questionsverbutim caused
difficulties of interpretation by some children, who interrupted and asked
for clarification. I decided that these difficulties required an explanation
which clarified that students were expected to 'choose a number'. Having
carried out this explanation with one class I decided to use the same
explanation before asking the questions in all later situations.

Use of recording sheets allowed me to identify students who made the
same choice for all three questions and/or wrote reasons for their choices.
Use of interviews allowed me to probe reasons for the choices made.

Analysis of Responses
The responses to question I which are shown in Table I enable a compar-
ison to be made between those made by the children involved in this study
and those made by the adults in Teigen's study. The results are shown as
percentages; there may be some small errors due to rounding. The central
values (5, 6, 7, 8) are printed in bold to identify the numbers defined as
those indicating use of a representative heuristic as proposed by Teigen.

Teigen has not reported any incidence of an 'alternative choice' in his
study. It has been included as part of this study because it was made so
frequently by Year 5 and 7 students in this and other questions. The
formal recording sheets made it easier for those with alternative views to
express them, even though they were not encouraged.

For this question Teigen's view is supported by the responses of students
in all three year groups. However, the choices of extreme values made by
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Year 5 students seem to vary from those of all other groups, by being
biased to the upper numbers (9, 10, 11, 12).

Table 1
Prediction about the result of the first ticket drawn from tickets numbered
1-12, iven as ercentales

Numbers

Truran
Year 3
n = 28

Year 5
n = 167

Year 7
n = 115

Teigen
Adult

n =201

1,2,3,4 18.7 9.4 21.2 19.2

5,6,7,8 52.3 52.1 50.1 58.9
9,10,11,12 28.3 31.2 18.6 21.9

alternative choice 5.2 10.4

The primary students' responses to Question 2 (Table 2), where the
twelve numbers are split into blue and red groups, form a very different
pattern from the adults' responses; where Teigen argued that the central
tendency had disappeared, and that the preferences were divided between
the two groups with peaks appearing at two 'blue' and one red
'representative' number.

In all three groups of primary students, there is still evidence of a distinct
preference for the central values (5, 6, 7, 8) as for Question 1. Of those
Year 3 and 5 students who did not choose central values there is a bias
towards the upper values (9, 10, 11, 12). However, this is not the case
with Year 7 students whose choices of both sets of extreme values are
symmetric. The 'alternative choice' is particularly large in the case of
Year 7 students and makes the gauging of an accurate indication of their
beliefs difficult.

Table 2
Prediction about the result of blue tickets numbered 1-6 and red tickets
numbered 7-12, given as percentages

Numbers

Truran
Year 3
n = 28

Year 5
n= 167

Year 7
n=115

Teigen
Adult

n = 201

1,2,3,4 20.7 20.8 19.1 26.5

5,6,7,8 43.9 42.2 46.4 36.5

9,10,11,12 36.8 33.4 19.1 35.0

alternative choice 1.0 5.7 12.9
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Question 3 (Table 3) produced very different responses from the
previous questions. Because of the different patterns of responses to
Question 3 (Table 3), the lower values (1, 2, 3, 4) and (12) are printed in
bold to enable efficient comparison of the numbers which were most
frequently chosen by the primary students.

When the adult students were asked 'what number do you think will be
drawn after the first eleven tickets have been drawn one by one', the
pattern of choosing central values diminished and the choice of extreme
values was almost as frequent.

The primary students' responses, on the other hand, indicated a strong
preference for the lower values (1, 2, 3, 4) and for 12. From their
written and interview comments these choices seemed to be based on a
belief that there is a positional relationship between the number on a
ticket and its place in a container.

Possibly the only pattern that emerges from comparison of the data from
this question is the decline in the choice of (12) after Year 3 in this study.
Again, the large 'alternative choice' selection by Year 7 students has had a
marked influence on the overall results.

Table 3

Prediction abou the result of the last ticket drawn from tickets numbered
1-12, ercenta es

Numbers n =28 n= 167 n= 115
Adult

n = 201

1,2,3,4 30.0

5,6,7,8 34.0

9,10,11 27.0

12 7.0

alternative choice

Analysis of Children's Detailed Responses
Once the written responses from students taking part in this study were
analysed it became evident that some primary students, particularly those
in Year 7, were reluctant to choose one number to predict an answer to
one or all of the three questions, and chose instead a non-numeric
response. interviews gave me an opportunity to examine responses to
questions in more depth and to probe the responses given.



ALTERNATIVE CHOICES

Alternative choices were made by as many as 6% of Year 5 and 13% of
Year 7 students. 'I don't know' was a common answer. When the student
had made the choice 'any', it was qualified by responses like, 'you can't
tell which number you will pick, they all have the same chance'. A
number of students discussed the process of mixing the tickets to clarify
the point being made.

(LA F. Yr 7 12:2)

LA It could be any number.
I Can you say why?
LA No all numbers have the same chance if they're mixed up.

The most frequent explanation was a criticism of the wording of the
questions: they 'didn't make sense', therefore, you couldn't say what
number 'it' would be.

The difficulty for some primary children seemed to stem from the hypo-
thetical problem presented by the questions and the difficulty of concept-
ualising the situation. But there are others who had no trouble with this,
and made a specific number choice and confidently justified their choices.

THE LARGEST, SMALLEST AND MIDDLE NUMBERS

Common specific number choices were six, twelve or one. The reasons
given for these choices related either to the fact that these were the
largest, smallest or middle numbers of the set, and thought that the
number on this ticket would put it into an optimal position in the
container, so that it would be the first (or last) chosen.

The following interviews were with students who chose what they saw as
the middle number and explained why they had made this choice.

(DR F. Y7 11:10)

DR Six.
Can you say why?

DR When it's something like this I always choose the middle
number.

(CL F. Y5 10:2)

CL Six.
I Can you say why?
CL Because it's halfway.
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The students who chose extreme values, appeared to be using an image of
the arrangement of tickets in a container, and so, in trying to make sense
of the questions they focused on a mental picture to help them to do this.

(TC M. Yr 5 11:0) replied

TC Twelve.
Any reason for choosing 12?

TC It's the highest, most of the time you take out the highest last.

(KP. F. Year 3 8:9)

KP Twelve.
Can you say why?

KP Because there are 12 tickets altogether, so I think 12 would
be the last number left.

(AN M. Year 5 11:2)

AN Twelve.
Can you say why?

AN Because it would be on top it would be the last to go in.

DECISIONS REFLECTING THE ENVIRONMENT

Some children responded to the questions as if they were raffles. Again
personal preferences, or past experiences influenced a number of choices
which the children could neither explain or justify, except by implying
that the number represented an important one.

(MA F. Y7 11:3)

MA Ten
I Why would ten be your choice?
MA Because ten or any other higher number with two numbers

together, like eleven or twelve, the highest numbers
just come up in raffles and the lower numbers don't
and when the numbers are all shuffled up and all that
the higher numbers are mostly on top.

(AD M. Y.5 9:1)

AD I'd choose 3 or 4; sometimes when there's a raffle I
often get 4. Once there were two raffles one for Joey
Scouts and one for Cubs and I picked out 4 two times
in a row.

(MM M. Y3 7:10)
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MM Six.
Can you say why?

MM It's my favourite number.

(11 F. Y5 10:3)

lI Ten
I Can you say why
JI It's how old I am

Discussion

These questions caused a great deal of difficulty for some students. Some
complained 'I've never done this before' and were reluctant to respond.
The use of two colours in question 2 seemed to influence some responses,
especially from younger children, who interpreted the use of two colours
as relating to two separate questions. They asked questions like 'can I do 2
colours' (select a 'blue' number and a 'red' number)?

Teigen's claim, supported by his research, is that a representativeness
heuristic determines the middle-range choices made by the majority of
subjects questioned. While there is evidence of some middle-range choice
by young children there is also evidence of other influences on their
responses to questions posed in this study.

A comparison of responses to Questions 1 and 3 would provide a basis
for an interesting further study.. An analysis of the very different
responses to these questions will provide worthwhile information on how
children perceive two questions that are similar; which ticket will be
drawn first, which will be drawn last? While at the same time providing
some further insights into how children view non-determanistic situations
of this type.
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TWO PROBLEMS UNDER ONE TITLE:

THE CASE OF DIVISION BY ZERO

Pessia Tsamir

Kibbutzim State College and Tel Aviv University

Division by zero, is often regarded as problematic for instruction. So far
little has been done to find out whether students distinguish between a:0 for (19=0
and 0:0, and whether they know the different reasons for each of those divisions'
being undefined. This article reports an analysis of 32 preservice (secondary)
mathematics teachers' understanding of division by zero. The findings show that,
although-many of the participants could produce correct answers to the problem
5:0, several could not, and only a few were able to give mathematical explanations
for the underlying principles. Moreover, even though the case of a:0 for a#0 was
discussed in class through several didactic approaches, when asked to solve the
problem 0:0, the participants encountered difficulties. However, quite a number of
participants concluded that 0:0 is undefined, while none of them could sensibly
apply the formal explanation.

Introduction
The fact that division by zero is undefined has been indicated by researchers

as problematic for instruction (see, for instance, Allinger, 1980; Ball, 1990; Reys,
1974; Wheeler & Feghali, 1983). Some of the reasons for-this, as research
indicates, might be rooted in mathematics education. Young students, when dealing
with division, are confronted for the first time with a mathematical situation that is
excluded as "illegal": the case of division by zero. Until then students' mathematical
experience has guided them to believe that every problem has a numerical solution,
so that an unsolved problem must be the consequence of their pooi comprehension
and their being unable to provide the probably existing desired solution.

Findings indicate students' tendency to attribute numerical values, finite 'or
infinite, to a:0 (for both a*0 and a=0). Most students who held that a:0 was
undefined based their answers on memorized rules only (e.g. Ball, 1990; Reys,
1974).

Students' problem with division by zero is two-fold as this division in fact
includes two different parts: a:0 for a*0 and 0:0. This is obtained by carefully
studying the definition of division. The quotient a:b is the unique number x such
that bx=a, if such a number exists. An attempt to apply, this definition with b=0,
for either a*0 or a=0, yields the following conclusions: (1) Let a*O. Then a:0
means a number x such that 0x=a. But , clearly no such number can exist sin& 0x
always equals zero, whereas a*0 is given. (2) Let a=0. Then a:0 or 0:0 means a
number x so that 0-x=0; But this equation is satisfied by any number x, and hence
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the problem does not have a unique result. Thus, division by zero is excluded in
all cases.

As mentioned before, these two different explanations account for the fact
that the first encounter students have with the undefined' is 'double trouble':
Within one mathematical context and under one title, two kinds of undefined cases
are concurrently presented, in a visually similar way. Not only are the students
required to and accept the meaning of 'undefined' in mathematics; but they must
also distinguish between the factors that have caused these two different cases to be
undefined.

To the best of our knowledge, there is no reported evidence about either
students' or preservice teachers' understanding of the mathematical meaning and the
special problematics of 0:0. Nor have we found evidence about their ability to
distinctly infer to attributes that differentiate 0:0 from a:0 in the case of a#0.

This lack of evidence determines the aims of this study, which are (a) the
investigation of preservice teachers' ideas concerning 5:0 and 0:0, and (b) the
connections, if any, that have been made in the case of 0:0 with the formal
explanation that was presented in class for 5:0, as a representative of a:0 for
being undefined.

Method

A group of 32 preservice (secondary) mathematics teachers were selected
for:

. (a) An individual interview The students were asked to solve 5:0=? and
0:0=? in writing, in the presence of the researcher, and then to discuss their
intuitive answers in an individual interview. (b) A short course concerning the
problem a:0 a7±0 - Students participated in a course consisting of three main
parts using: (1) the formal approach, (2) some additional approaches, as
introduced by Knifong & Burton (1980), and (3) guiding towards analyzing each
given answer by focusing on problematic ideas and misconceptions. (c) A
questionnaire - About five weeks after the course, the participants were asked
again to respond, in writing, to a questionnaire that included the problems 5:0 .?
and 0:0=?

It is noteworthy that the problem of 0:0 was not referred to at all during the
course.

Results

The results are displayed in two main columns: pre-course and post-course
responses (Table 1). For each column judgments and justifications to the problems
5:0 and 0:0 are presented, and new ideas or special expressions that were raised are
detailed.
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Table 1

Judgments and justifications to 5:0 and 0:0 - before and after the course

Pre-Course
5:0 0:0

Post-Course
5:0 0:0

Undefined 21 19 32 25

Valid formal explanation 3 25

Invalid explanation 3

"It's a rule" (memory) 8 9 3 15

"Zero is nothing" 2 2

Everyday considerations 5 4 2 4

Locally/temporarily undefined 3 4 2 3

Zero 2 5 3

Overgeneralization 0:a, a7t0 2 3 2

Everyday considerations 2 1

Five 2

"Zero is nothing" 1

Everyday considerations 1

One 3 1

Overgeneralization 0:a, a*0 2

Everyday considerations 1

Infinity 5 3 2

"It is the limit" 5 3 2

Don't Know 2 2 1

I. Pre-Course Responses

Preservice teachers' answers to the problem 5:0

Twenty-one of the 32 participants offered correct judgments, arguing that
dividing five by zero is impossible or undefined, but their explanations
varied.

Only three of these students used the formal justification for, their
answers (see al below). In most cases the correct responses were not accompanied
by meaningful justifications (a2-a5). For instance, participants tended to base their
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performance on particular rules rather than focusing on underlying meanings; thus
eight of them based their answers on sheer memorization with no meaningful
explanation (a2). Seven participants exhibited an erroneous conception of zero
being 'nothing', rather than a numerical entity. Two of them justified their
claim purely within the mathematical framework (a3), whereas the other five
inappropriately added realistic (or everyday) examples (a4). A rather
interesting line of reasoning was displayed by three participants who viewed
division by zero as being locally undefined in a limited mathematical field or
temporarily undefined, as long as no calculus has been studied (a5).

(al) 5:0=? has 0 ?=5 as a related multiplication sentence... Therefore, 5:0 has
no solution.

(a2) My teacher explicitly emphasized that there is such a rule in mathematics...

(a3) It is impossible to divide by zero, as you have nothing to divide by, hence
there is no result to 5:0.

(a4) You cannot perform the division of five biscuits, in equal shares, among no
children.

(a5) Until a certain age you must use the word 'undefined'. It's just that you
can't tell young children at school about infinity. They won't understand it.

In addition to the correct responses, various ERRONEOUS RESPONSES, were
presented by nine participants who attributed numerical values to 5:0. Five of them
made inappropriate connections with the theory of potential infinity,
concluding that S:O= infinity (b4). They confused the 'static' procedure of
division, with the 'dynamic' procedure of limits. It is noteworthy that the issue of
limits had been studied during this period in calculus lessons.

Two participants overgeneralized the relation between multiplication and division
(b 1 ). Their response was that dividing and multiplying anything by zero equals
zero, thus 5:0=0. Another couple of students claimed that 5:0=5 (b2,b3) due to
their misconception of zero (assuming it was 'nothing'), and their
misconception of division (confusing the remainder with the quotient).

(b1) 5:0=0 - As the result of multiplying anything by zero is constantly zero,
dividing anything by zero gives the same result.

(b2) 5:0=5 5:0 means 5 divided by nothing. I haven't divided by anything, so
I still have 5.

(b3) 5:0=5 - Dividing 5 marbles among nobody leaves you with your five
marbles.

(b4) 5:0=infinity The smaller the divisor, the bigger is the result... It's the
limit... infinity.

(b5) I cannot figure out which one is problematic... dividing zero or dividing by
zero...
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Unsuccessful attempts, made by two other participants who relied solely on
their memory, produced 'no answers'. Their explanations revealed their
confusion which was caused by having no conceptual understanding to rely on (b5).

Preservice teachers' answers to the problem 0:0

Nineteen of the 32 participants presented CORRECT JUDGMENTS to the
problem 0:0, i.e., that 0:0 is undefined. However, none of their inferences were
based on the formal explanation. In nine cases the justifications were merely
consisted of stating a certain rule, without any indication that the participants
knew what the rule was. Much like in the case of solving 5:0, six participants
exhibited wrong conceptions of the number 'zero' and the operation
'division', and four more participants based their assertions only on everyday
experience (cl).
(cl) If one has no marbles and there are no children to divide the (no) marbles

to, then how can you possibly give anything to anyone? It's impossible.

Four participants presented again the idea of locally undefined (i.e., the
answer depended on one's mathematical background, so that 0:0 would equal
'infinity' for calculus graduates and 'undefined' for those who were not acquainted
with the concept of limit).

However, not all participants claimed that 0:0 is undefined. Thirteen
participants came up with erroneous responses. Three of them argued that 0:0
equals infinity, whereas eight presented the following finite solutions 0:0=1 (3),
and 0:0=0 (5). These solutions were due to their overgeneralization of
mathematical rules, such as a:a=1 and 0:a=0 (c2, c4). In one case, a realistic
(everyday) example was provided (c3).

(c2) 0:0=0 Zero multiplied by any number and zero divided by any number is
zero.

(c3) 0:0=0 - If you have, for example, no cake and no children to give them
from it, then there is nothing.. no cake and no children.. zero of
everything..

(c4) 0:0=1 - Any number divided by itself is 1.

Two participants had no answer, as they claimed neither to remember the
solution nor being able to reconstruct it.

II. Post-Course Responses

Preservice teachers' answers to the problem 5:0

After the course, all 32 participants claimed correctly that 5:0 is undefined,
and 25 of them justified their claim via the valid formal explanation. Still, in
their justifications, three participants were satisfied with merely stating that there
is such a rule, two other participants only presented an everyday illustration,

4 - 351



whereas the last two participants explained that as long as infinity and limits had not
been studied 5:0 would be "temporarily undefined".

It is most striking that even after the course some participants failed to
understand that realistic examples are quite problematic. Such examples are not
always faithful to the mathematical ideas for which they are meant to stand. Thus,
for instance, if we accepted the idea of "dividing marbles" - 0:5 should also be
undefined, because dividing no marbles among five children is practically
impossible.

Preservice teachers' answers to the problem 0:0

The improvement in preservice teachers' responses to 0:0 after the course
was not as dramatic as in the case of 5:0. Still, it was quite meaningful considering
the fact that 0:0 had not been explicitly dealt with at all during the course. Twenty-
five participants answered correctly that 0:0 is undefined, but they did not
provide any valid explanations. Fifteen of them arbitrarily claimed that there
is such a rule, four others provided realistic examples, and the remaining six
argued that the answer would be locally undefined so long as we cannot refer to
calculus and infinity Though three participants did try to apply the formal process
which they had studied during the course, all of them failed to do it right. They
submitted the following invalid explanations:

(dl) We have already shown that 3:0=t<> t.0=3 that's impossible so 3:0 is
undefined... Similarly, I would assign the students to complete the
procedure 0:0=t<=>t0=0 so that 0:0 is undefined.

(d2) I'd start with a familiar example such as 2:0=x implies that x.0=2, which
contradicts the necessity to get zero and consequently the response should be
undefined. Now 0:0=y means that 0y=y - contradiction!

These participants were quite sure about "knowing the answer", and as they
were asked to justify their claim, they hastily fabricated some apparently formal
explanation. They started with implementing the procedure that was used in class
for a#0, but consequently two lines of reasoning were introduced by them in the
following manner:

a. Presenting valid connections as contradictory - It can easily be seen (dl)
that no contradiction has actually been reached

b. Reaching the contradiction through invalid connections between
multiplication and division A wrong claim that 0:0=y implies 0y=y,
creates a "negation" (d2).

Six preservice teachers related to 0:0 numeric values, that are zero, one and
infinity. Three participants based their justifications on the overgeneralized rule
0:a also using everyday considerations; one participant justified his claim by
the over generalized rule a:a=1; and 2 others justified by the rules of limit.
One participant admitted that he did not know the answer (d3):
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(d3) I can't decide whether it follows the rule that it's zero, or if it is undefined.
There may even be another rule for this special case of two zeros.

Final Comments and Recommendations
Our findings indicate that preservice teachers failed to make a meaningful

transfer from the case of a:0 for a*O, which was studied in class, to 0:0 being
undefined. In several cases they even expressed their confusion, being not quite
sure whether and how 0:0 relates to the well-defined case of 0:a (a*0). There is no
doubt that the pedagogical problem of dividing by zero revolves around three
central issues: 0:a for a*0 (equals zero), a:0 for a*0 (undefined, since there
is no value to satisfy the definition), and 0:0 (undefined, since there is no unique
value to satisfy the definition).

Consequently each of these issues should be treated separately in class, and
subsequently inferences should be made to both the common and differentiating
aspects of these problems.

Moreover, this study indicates that the meaningful teaching and treatment of
these issues requires some basic knowledge concerning mathematical notions, such
as, zero, division, and being undefined, which are crucial to the comprehension of
this perplexing topic. For instance, our findings strongly indicate students'
unfamiliarity with the attributes of division, and in particular their lack of
knowledge concerning the necessity of a unique solution, which is crucial for
proving 0:0 to be undefined.

One of the most outstanding results has been, evidently, that preservice
teachers did not find formal reasoning necessary for validating their mathematical
assertions. One might argue that as long as the rules are perfectly implemented,
there is no harm in pure memorization. But accepting mathematical rules as merely
arbitrary might destroy the ability to reconstruct forgotten rules, and might even
mix up visually similar cases with problematic ones, e.g., 0:5 and 5:0. Thus in
mathematical explanations, formalism should not be seen as a side issue, but as an
important tool for clarification, validation and understanding (Hanna, 1991). This
particularly is relevant when dealing with complicated problems such as the case of
division by zero.
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CHILDREN'S INTERACTION AND FRACTION LEARNING IN A COMPUTER
MICROWORLD: CONSTRUCTION OF THE ITERATIVE FRACTION SCHEME

RON TZUR

THE PENNSYLVANIA STATE UNIVERSITY

Interaction served as a theoretical core of a constructivist teaching experiment, in
which two fourth graders' fraction learning was studied. Using a Task Oriented
Approach to teacher-learner interaction (TOA), the teacher created and sustained
learning environment in which both Linda and Jordan appeared to have challenging,
meaningful, and enjoyable learning experiences. Teacher's tasks and constraints
brought forth the children's equi-partitioning scheme and partitive fraction scheme
and encouraged using iteration of various fractional parts to compose the whole or
other fractional parts. Through interaction in a computer microworld, the teacher
facilitated the children's construction of the Iterative Fraction Scheme (IFS).

A Constructivist Framework
The study addressed possible relations between children's interaction in a computer
microworld and their fraction learning, because constructing fraction knowledge is a
hurdle for many children and because research about teacher's involvement in
children's fraction learning can hardly be found (Behr, Harel, Post, & Lesh, 1992).
In the context of scheme theory (Piaget, 1980; Steffe, 1993; von Glasersfeld, 1989), I
view children's learning as modifying and re-organizing current conceptual structures
to neutralize perturbations. Schemes are conceptual structures by which the individual
assimilates and/or organizes aspects of her or his experiences (Konold & Johnson,
1991). Schemes include three parts (von Glasersfeld, 1989): (a) recognition of a
certain experience, (b) a specific activity that is related with that kind of experience,
and (c) anticipation of a certain result that can turn into a prediction. Perturbation
refers to any disturbance in a system produced by the scheme-based functioning of the
system and it can be created through two types of interaction (Maturana, 1978): (a)
interaction among elements within the child and (b) child-environment interaction.

Tzur(1995) specified three types of child-environment interaction to address possible
involvement of the teacher in children's learning: child-initiated and self-referencing
(e.g., mumbling to oneself), child-initiated and environment referencing (e.g., asking
someone a question), and non-child initiated interaction (e.g., answering someone's
question). In all three types, the teacher can assimilate the child's actions and language
and interact with the child with an intention to engender specific perturbations that can
lead the child to modify a specific scheme. The teacher may create constructive
perturbations by engaging the child in goal-directed activities that bring about: (a) a
failure to produce the anticipated result of the scheme, (b) a desirable result that was
not anticipated and/or that was expected from another scheme, and (c) a blockage of
the activity that should have resulted from the assimilating scheme (e.g., a constraint).
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Perturbations are viewed necessary for learning but they can be debilitating when
children cannot find paths of action to neutralize them (Steffe & Tzur, 1994).
Children are likely to bear task-generated perturbations if they also experience the
satisfaction of solving the task. Otherwise, children may be too frustrated, lack
confidence, and lose interest. Thus, the teacher's role is to constitute learning
situations in which children experience perturbations that are not so far removed from
their current means of acting mathematically to impede the neutralization of those
perturbations.

To engender constructive perturbations, Tzur (1995) proposed a task-oriented
approach to teacher-learner interaction (TOA). In the TOA the teacher is involved in
children's learning through posing and solving challenging mathematical tasks. The
teacher, on the basis of her or his psychological, mathematical and pedagogical
knowledge which includes an ever-changing model of the children's ever-changing
mathematics, engages the children in posing and solving initial, reflective, and
anticipatory tasks.

When the teacher poses an initial task the children need to: interpret it, set a goal, and
initiate activities toward their goal. According to the children's actions and language
while solving (or posing) the initial task(s), the teacher poses reflective tasks tasks
that foster in the children re-presentations and abstractions of certain aspects of their
experiences. For example, the teacher may ask children whether or not they had
solved the task, or to explain/justify their answer. When the teacher interprets the
children's work as indicating suitable ways of operating with initial and reflective
tasks of a specific sort, the teacher poses anticipatory tasks. The purpose of
anticipatory tasks is to challenge the children to work mentally rather than by carrying
out actual activities.

Prior to constructing the IFS, Jordan and Linda constructed the equi-partitioning
scheme and the partitive fraction scheme on the basis of four fundamental activities:
decomposition, comparison, recomposition, and coordination with standard words
(Tzur, 1995). In particular, those schemes were established on iterating fraction units
to compose the whole and/or other fractional parts. Iteration was considered an
appropriate means of composition because children use iteration of, units to compose
and operate with numbers. While working on sharing tasks, Jordan and Linda used
iteration of a single part to create partitive units and used their numbers to coordinate
those units with standard fraction words. For example, they called a part that was
repeated 5 times to compose a specified 5-part whole "one-fifth," 3 such parts
"three-fifths," and the whole"five-fifths." A major characteristic of the two first
schemes was the children inability to conceptualize fractional parts that exceeded the
whole (e.g., "ten-sevenths"). This paper addresses the children's work on tasks that
led to overcoming those difficulties and constructing the IFS.

Method
A constructivist teaching experiment was conducted with Jordan and Linda during the
second half of their fourth grade (1993). During that year we have conducted 29
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videotaped teaching episodes once or twice a week, about 20-30 minutes each. Two
faculty and 2-3 graduate students observed the teacher-researcher's work with the
children and collaborated in the analysis/planning sessions between every two
consecutive teaching episodes.

The teacher-researcher worked with the children in a computer microworld called
Sticks. Sticks was dynamically developed to allow activities that seem to support
conceptual operations needed for fraction learning. In this microworld a child may
draw a stick using Draw and copy it as many times as desired using Copy. The child
can mark a stick vertically using Marks, and any mark can be erased or moved. A
child can partition any stick into d equal pieces by clicking on Parts, "dialing" a
number (2-99), then clicking on a stick. Using Cut, the child can cut any stick at a
desired point, join the stick to any other stick using Join, or position the stick at any
desired place on the screen. A child can repeat a stick using Repeat, and break the
stick into its pieces according to the marks on the stick using Break. Using Pull-Parts,
the child can pull any number of parts out of a partitioned stick, and measure the stick
by copying a reference stick into the ruler and using Measure. A child can also fill
sticks (or parts) with 10 different colors using Fill, label them by a fraction symbol
using Label, and cover or uncover sticks.

Establishing the Iterative Fraction Scheme (IFS)
Establishing the IFS required a qualitative transformation in the children's conception
of part-to-whole relation that was constructed in the equi-partitioning and the partitive
fraction schemes (Tzur, 1995). In those two schemes, the partitioned whole was
constructed and conceived as containing exactly d parts and the child could not iterate
partitive units over its boundaries. If the number of iterations exceeded the original
whole (e.g., iterating I/8-stick ten times), the child regarded the result as a new
partitioned whole (10/10-stick), not as a 10/8-stick.

To overcome the stumbling block of the bounded whole, the teacher's goal was to
capitalize on the children's use of iteration of fractional units to create and make sense
of fractional parts that exceed the whole. The children needed to learn to maintain
the original ratio between the part and the whole regardless of how many times the
fraction unit was iterated. To do so, the teacher posed tasks of iterating fractional
parts within, and then over the boundaries of the whole. As a result, Jordan and Linda
re-constructed the fractional parts as iterable fraction units, i.e., conceptual structures
prior to iterating them.

Iterating Fraction Units Over the Boundaries of the Whole
On 3-31-93, the teacher suggested to play "Guess the stick I am thinking or only with
elevenths. Linda posed the first problem (3/11) and Jordan partitioned the whole into
11 parts, then filled 3 of them in a different color. After the teacher asked Jordan,
"You want to pull it out" he pulled 1/11 and repeated it three times. Next, Jordan
"thought of 6/11" and Linda solved it by partitioning a new stick into 11 parts, filling
6 in a different color, and pulling the parts out of the whole.
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The children's actions indicated a dual conception of the fractional parts (3/11 and
6/11)units embedded within, or disembedded from the partitioned whole. This dual
conception served as a precursor to iterating such a unit over the boundaries of the
whole while maintaining the 1-to-11 part-to-whole relation. To maintain the I-to-11relation even if the number of such parts exceeds the 11/11-stick, the child mustabstract the I/11 and conceive it as a unit in spite of its location or perceptual
appearance.

The teacher asked, "I am thinking of a stick that is twice as long as the 3/11," and
Jordan copied the 3/11 twice and joined the copies. Jordan's immediate use of Copy
and Join indicated that he was able to envision an abstract stick like the stick that the
teacher "thought or and to interpret the task as implying iteration of the 3/11-stick
twice. The teacher asked Jordan how much was the joined stick of the original whole.
Jordan said "6/11," and explained: "I know that 3 plus 3 is six, and, then, eleven piecesof it." Jordan's explanation indicated that he did not confuse the 1-to-11 relation with
the number of times the 1/11-stick or the 3/11-stick were iterated. Jordan seemed tofeel the logical necessity regarding the type of part (1/11) each of the 6 pieces were.
In this sense, he was ready to solve a task of iterating a fractional part over the
boundaries of the whole. At this point, Linda smiled and asked Jordan: "I think of astick that is 11/11 of that [original] stick." Jordan partitioned a copy of the whole into
11 parts and Linda said "Yeah." Next, the teacher asked, "we want it out of..." and
"can you name it another way?" and Jordan copied the 11/11-stick and answered: "Awhole."

Linda's choice of 11/11 and her smile seemed to reflect her current conception of the
bounded whole. It indicated that the "largest" number possible is 11/11, and she
realized the meaning of such a numberpulling the whole out of itself. The teachercould have not asked for a better choice, since Linda's 11/11 stressed the 1-to-11
relation between the part iterated (1/11) and the stick she "thought of." The teacher's
question for a different name and Jordan's answer "A whole" supported both
children's awareness of the 11/11 partitioned whole.
Since Linda used the "largest" number of elevenths possible, Jordan thought "of a stick
that is 10/11," and Linda solved it. Then, it was the teacher's turn to pose a task.

Protocol I (3-31-93. episode 21)
1: OK, now I'm thinking of a stick that is twice as long as the 6/11.
L: (Copies the 6/11-stick, repeats it twice, and puts next to the 6/11.) (cf. Figure 1)

36 4 358



T: I have a question. Is that the original one StiasPiecesStatusCof Lair ismioreErase ClearQuit
(points to the original 11/11-stick)?

Both: (Nodding yes.) oi.tro-ro.r--- Jordan's 11 /11-stick
1=rto Jordan's 3/11 stick

T: Oh, OK. How much is that one (12/11],
that you made right now...

6°421=P:14cl/11-stick glicsz13:13113"12/11-stick
J: (Interrupts the teacher's talk) Twice as

long as that one.
T: ... of the original one?
J: Oh ...
L: There's only one left over from this one

(points to the 11/11-stick, probably means t!?.. tlom Q 1pu» Parts

one piece more than the whole).
J: (Hesitantly) There's ... umm, see there's Figure I. Linda repeated the 6/I I -stick twice.

eleven, there's 12 pieces, and, umm, people that came to the party, and they eat
11, so there's one left, so one more on it.

T: (Nodding yes) So how much is it?
J: (Hesitantly) So it's eleve ... twelve-elevenths?
T: (To Jordan) Twelve-elevenths you say? (To Linda) What do you say?
L: (Shrugs her shoulders) I don't know.
T: (To Jordan) How did you figure it out?
J: (Points to the screen with confidence) There's 6 ..
L: There's 12 pieces ...
J: There's 6 here, and 6 plus 6 is 12, and there's 11 here (points to the original

I 1/11-stick).
T: (To Linda) What do you say? Did you understand what he said?
L: Yes.

The teacher chose the unit to be iterated (6/11) and the number of iterations (2) to
foster a specific perturbation that the children could neutralize. Specifically, we
hypothesized that Jordan and/or Linda would be able to use their doubling strategy to
make sense of the result. Additionally, this result exceeded the reference whole in
only one part. In this way, the teacher hoped to minimize the level of computational
difficulty involved in the complex enough conceptual transformation. As it turned
out, the choice helped the children in neutralizing the perturbation of a fractional part
that contained more parts than the 11/11-stick.

I suggest that the key to the transformation in the children's conception w* the
sequence of interaction in which they posed and solved tasks that involved iterating
fractional parts. Particularly, they experienced the iteration of a fractional part (3/11)
twice and explicitly clarified the boundaries of the 11/1 I partitioned whole. In this
context, they produced the "impossible" 12/11 by iterating a fractional part (6/11)

twice rather than by iterating 1/11 twelve times.

Since Jordan was the one who "doubled" the 3 parts of I/11, it was not surprising that
he also suggested the solution of 12/11. Jordan's explanation clearly indicated that he
solved the problem with 6/11 using the experience of doubling; his hesitation when he
finally said "So its eleve ... twelve-elevenths?" indicated his perturbation. The reason

1.0.1.t.1Prrym
The original 11 /11-stick

color' Drawl IMarks1 lfl
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for this perturbation was twofold: (a) Jordan was not aware of the significance of
obtaining 12 pieces prior to iterating the 6/11 and (b) he realized there were 12 pieces
as a result of his action. Jordan's perturbation indicated a conflict between his prior
notion of the "impossibility" of fractional parts such as 12/11 and the result of his
action (doubling the 6/11).

Jordan's independent use of the birthday cake context illustrated the essential role of
an everyday context to his capability of thinking and communicating mathematically.
This context helped him to re-present a situation in which the 1-to-11 relation could be
distinguished from the number of parts resulting of the doubling operation. Linda's
reaction indicated that she was also able to re-present the situation and follow Jordan's
distinctionshe explicitly referred to "12 pieces" and seemed to understand that each
piece was 1/11.

Linda's solution ("There's only one left over from this one") and Jordan's solutions
(12/11) appeared to reflect different foci. Unfortunately, the teacher did not
understand Linda's answer at the time. It seems that she neutralized the perturbation
by focusing on the 11/11 partitioned whole and the remainder 1/11 because she
previously posed the problem of making 11/11 to Jordan. In this sense, Linda's
solution can be characterized as a whole-based focus. Linda's solution suggested that
she was able to maintain both the 1-to-11 relation and the partitioned 11/11-stick.
Specifically, she was able to decompose the 12/11-stick into two units-11/11 and
1/11, which highlighted her use of the 1/11 as an iterable unit similarly to her use of
one when producing numbers (i.e., 12 can be made of 11 and 1).

To see if Linda could independently conceptualize a fractional part that exceeds the
whole, the teacher asked Jordan to make a stick that is three times as long as the 6/11
and he did. Then, in response to the teacher's reflective questions "How much is that
one?" and "How did you know that?" Linda thought for about 6 seconds, said
"Eighteen-elevenths," and explained: "Because ... 6 times 3 is ... 18." Next, the
teacher posed an anticipatory question, "If I would ask about 5 times as long as the
6/II?" and both children answered that it would result in "thirty-elevenths."

Explaining the Activities of Another Child. The teacher asked Jordan to iterate the
6/11 because it was Jordan's turn, and because the teacher wanted to switch the roles in
the previous task. Asking a child to explain the other child's activities of solving a
task in the microworld greatly supported the children's cooperation and their use of
mental operations. To explain the other child's iteration activity, the "explainer" must
assimilate, re-present, and make sense of the "Aerator's" activities. Likewise, the
"iterator" assimilates and interprets the "explainer's" ideas by relating them to his or
her own activities.

The way Linda explained Jordan's activity highlighted her clear distinction between
the generating fraction unit (1/11) and the number of times it was iterated.
Specifically, Linda was able to reflect on Jordan's activities and create 18/11 as a unit
of units of units (three units of 6 units of 1/1 1) while using her notion of
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multiplication. In this sense, Linda found the result of iterating a fractional part in
conjunction with multiplication similarly to her activities with numbers. Linda's use
of multiplication contributed to the children's construction of the IFS. It opened the
way for using a familiar operation to deal with fractional units and strengthened the
children's capability to maintain the part-to-whole relation. For example, the children
easily answered the teacher's next question (5 times as long as the 6/11) that fostered
predicting the potential result of an activity without carrying it out.

In the next episode we used a "naming" activity to further enhance the children's IFS.
This time, we began with iterating a fraction unit (1/8) nine times. The children
appeared to be immersed in the lengthy naming activity and challenged by the goal of
producing an appropriate fraction name. Eventually, they summarized their
understanding of the iterated unit as both "Nine-eighths" and "One and one-eighth."

Discussion
The children's establishment of the IFS occurred in an activity of iterating fractional
part over the boundaries of the whole. To make sense and communicate their
conceptualization, the children also had to coordinate their new conception with a
standard word as part of the construction process. This coordination served as a goal
towards which they worked (i.e., explaining to others), as well as a means to
conceptualize the part-to-whole relation. In this sense, the "naming" activity served
the dual function of constructing conceptsconceptualizing and communicating.

"Guess the stick I am thinking of" was a teacher-initiated task that fostered child-
sustained interactions. The children were engaged in a playful mathematical
interaction in which they posed and solved tasks, and justified the solutions. Thus, the
teacher was able to pull back, to lessen control over the situation, to observe the
children's work, and to ask appropriate reflective or anticipatory questions. In this
sense, a task that fosters child-sustained interaction supports the teacher's involvement
in the children's learning while increasing their ownership over the learning situation.
Additionally, a child-sustained interaction creates an open learning situation. After the
teacher stated the task, one could not predict which child would pose the first task, nor
what task would be posed or what computer action would be used. It seems that the
open learning situation strengthened the children's conception of oneself and of one
another as a mathematical source, that is, as "a person.... consulted for information or
providing initial inspiration" (New Webster's Dictionary, 1993, p. 948).

Through the child-sustained interactions of naming and playing "Guess the stick I am
thinking of," Linda and Jordan transformed their conception of the bounded whole
and part-to-whole relation. This transformation was based upon iterationthe very
operation used in producing fractional parts. Psychologically, solving tasks in which a
composite fraction unit is iterated within the boundaries of the whole (3/11 6/11)
and then over the boundaries (6/11 -- 12/11) makes sense. Ordering the tasks that
way facilitated the children's focus upon the relation among parts of the same sort.
Implicitly, the generating unit (1/11) was taken as a given and the children
concentrated on the results of iterating it and producing units of units of units (e.g., 2
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units of 6 units of 1/11). As Jordan's first explanation of this operation indicated,
iterating a composite partitive unit resulted in a distinction between the generating
fraction unit and the number of iterations. This distinction brought forth a
transformation in the children's conception of part-to-whole relation. Hereafter, they
were able to maintain the I -to-11 relation and the partitioned original whole and
experience no difficulty in conceptualizing and operating with fractional parts that
exceed the whole.

References
Behr, M. J., Harel, G., Post, T., & Lesh, R. (1992). Rational number, ratio, and

proportion. In D. A. Grouws (Ed.), Handbook of research on mathematics teaching
And learning (pp. 296-333). New York: Macmillan.

Konold, C., & Johnson, D. (1991). Philosophical and psychological aspects of
constructivism. In L. P. Steffe (Ed.) Epistemological foundations of mathematical
experience (pp. 1-13). New York: Springer-Verlag.

Maturana, H. R. (1978). Biology of language: the epistemology of reality. In G. A.
Miller and E. Lenneberg (Eds.) Psychology and biology of language and thought:
essays in honor of Eric Lenneberg (pp. 27-63). New York: Academic.

New Webster's Dictionary and Thesaurus of the English Language (1993). Danbury,
CT: Lexicon.

Piaget, J. (1980). The psychogenesis of knowledge and its epistemological
significance. In M. Piattelli-Palmarini (Ed.), Language and learning: The debate
between Jean Piaget and Noam Chomsky (pp. 23-34). Cambridge: Harvard
University.

Steffe, L. P. (1993). Children's construction of iterative fraction schemes. A paper
presented at the 71st annual meeting of the National Council of Teachers of
Mathematics. Seattle, Washington.

Steffe, L. P., & Tzur, R. (1994). Interaction and children's mathematics. Journal of
Research in Childhood and Education, 1, 2, 99-116.

Tzur, R. (1995). Interaction and children's fraction learning. Unpublished doctoral
dissertation. Athens, GA: The University of Georgia.

Von Glasersfeld, E. (1989). Cognition, construction of knowledge, and teaching.
Synthese: a special issue of philosophy of Science and Education.

3 ti 8 4 - 362



Precalculus and Graphic Calculators:
The Influence on Teacher's Beliefs*

Paola Valero and Cristina Gomez

"una empresa docente" Universidad de los Andes (Colombia)

This study explored the effects on the belief system with respect to mathematics,
its educational aims, its teaching and learning and the role of instructional
materials, of a teacher who was involved in a curricular innovation centered on
graphic calculators. A Beliefs System Typology including five different ideolo-
gies about mathematics education was used as a conceptual framework. Three
different research techniques were applied to the teacher before and during the
introduction of the curricular innovation. The evidence shows that the teacher
modified her behavior in class, but she could not change completely her beliefs
system. Being involved in the experience began a questioning process which
could lead to a real eventual change in her beliefs system.

Introduction
This paper reports on an empirical, exploratory study framed within a larger research
program aiming at the examination of a series of changes in some elements of the cur-
riculum when graphic calculators are introduced in a Precalculus course for firstyear
university students.The main aim of this study was to explore the influence of the
introduction of graphic calculators within the classroom as a part of a whole curricular
change, on the teacher's beliefs with respect to mathematics, the aims of mathematics
education, its teaching, learning and the role of instructional resources.

Several studies have shown the importance of investigating teacher's beliefs due to
their close link to instructional practice (Thompson, 1984, 1992; Fernandes, 1995).
Special emphasis is also made in the relationship between teachers' beliefs and pro-
cesses of change (Pehkonen, 1995). Reported evidence shows that the teacher's model
of mathematics, its teaching and learning greatly influences his/her behavior. This is
the reason supporting the importance of looking at the teacher's beliefs system when
he/she is involved in a change like the one introducing graphic calculators as a tool for
mathematical knowledge construction within a classroom.

In spite of having noticed this special link between beliefs and behavior, most of
the research conducted has mainly used research techniques and instruments 'that
focus on "what the teacher says" as a way to deduce what he/she actually thinks. The
present research used a combination of different research instruments targeted to
explore both what the teacher does and says to conclude about what he/she thinks.
Besides, most of the research use a deductive methodology that analyzes either some
cases or ample samples of teachers and, as a result, build a typology of beliefs. This

This research was supported by the Colombian Institute for the Development of Science and Tech-
nology (COLCIENCIAS), the Foundation for the Development of Science and Technology of the
Colombian Central Hank, the PLACEM project, and Texas Instruments.
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research used a predefined typology and identified the teacher's position on it.

Conceptual framework
A belief system is a structured set of views, or groups of views, conceptions, values or
ideologies held by a teacher with respect to the elements composing his/her profes-
sional teaching practice. This system may have different degrees of intensity, i.e. some
conceptions are stronger than others; it is supposed to be coherent, but the groups of
beliefs may not necessarily be interdependent, i.e. some conceptions may be isolated
from the rest of them; and it is dynamic because it gets questioned whenever the
teacher is involved in a nourishing practice, in other words, there is a constant feed-
back among beliefs and experience. Although there is change and questioning, these
are slow, long-term processes.

Among the several elements which can be considered in a beliefs system, the five
most relevant for the research were chosen. These five elements teacher's view about
mathematics, about the aims of mathematics teaching, about learning, about teaching
and about the role of instructional materials may be seen in relation to different posi-
tions with respect to all of them. Following Emest' s typology (1991), five different
kinds of teachers, with their corresponding belief systems, may be sketched:

Industrial
Trainer

Technological
Pragmatist

Old Humanist Progressive
Educator

Public
Educator

Mathemat
ics

Set of truths and
rules associated
with authority

Body of unques-
tionable, useful
knowledge

Body of pure,
structured know'.
edge

Set of structured,
personalized
knowledge

Set of socially
built knowledge
that may be
changed

Aims of
M.E.

Mechanization of
basic skills

Usefulness of
knowledge. Ap,
plication to tech-
nology

Transmission of
cultural and ratio-
nal values. Mental
formation

Individual level-
opment and self-

realization
h mathe-through

matics

poten-
fiat development,
aimed at social
change

Teaching
Transmission of
skills, repetition
of exercises

Instruction on the
mastering of
skills. Applied
problem-solving

Explanations, mo-
tivation and trans-
mission of strut-
tures

Promotion of per-
sonal learning

Discussion, inves-
. . .

ligation, question-
ing

.
Learnm g

Authority, memo-
rization, mechani-
zation, rote-learn-
ing

.

Practice and ap-
plication of skills

Understanding of
mathematical
structures and
their application

Investigation, au-
tonorny, creati vi-

tY' mathematics
and explo-games
al

ration

Internalization of
social construc-
lions of mathe-
matics. Everyday
life problem-
solving

Materials
Paper and pencil.
Anti-calculators

Materials promot-
ing experimenta-

.

Lion. Calculators
and computers are
allowed

Traditional mate-
rials. The mini-
mum necessary
materials are al-
lowed

Any kind of mate-
rial that enhaces
the formation of
concepts and rep-
resentations

Different kinds of
materials. Each
student uses
those with which
he /she fees com-
fortable

Since teacher's beliefs are cognitive structures and, therefore, exist in the realm of
"what he thinks", and this realm can not he observed directly, it is necessary to
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approach them through another two realms: The realm of "what the teacher does"
his/her behavior in actual teaching practice with students, and the realm of "what
the teacher says" (his/her expressions and opinions about what is on his/her mind).
This distinction is quite important because inconsistencies between those realms may
occur: A teacher saying he hold a social- constructivist view of mathematics, its teach-
ing and learning, may act as an industrial trainer when interacting with students. The
question raised here is whether what he expresses reflects in reality what he thinks.
Due to the presence of these different realms and the possible conflicts between them,
exploring beliefs imply using more than one research technique in order to allow a
contrast between information as a clear idea of the real conceptions held by the
teacher.

Methodology
The research was conducted during two semesters, one previous to the introduction of
the curricular change, and the other with the curricular change. The same in-service
university teacher was observed during both semesters. Students in both groups shared
similar characteristics. Three different techniques were applied during both semesters
in order to establish their results for each one of the periods considered and then, con-
trast them for finding possible changes in the teacher's beliefs system. The techniques
used were:

Classroom Observations. A video recording of the teacher's performance in the class-
room in both semesters was taken during the length of the teaching-sequence for qua-
dratic functions. A representative sample of the videos were analyzed with respect to
five variables -teacher's usage of verbal and no-verbal language, teacher-student
interaction patterns, teacher's timing, kind of exercises and questions proposed by the
teacher, and teacher's treatment of students' error. These variables, as noticed by some
researchers (Robert et Robinet, 1989), differ from one teacher to another when they
hold different beliefs.The variables were operationalized through a detailed descrip-
tion of the behaviors of each type of teacher in the Beliefs System Typology with
respect to them. The specific instruments used for the analysis of the videos were the
Classroom Interaction Analysis proposed by Amidon (1971) and a content-analysis
technique based on the definition of the variables mentioned above. These instruments
gave information about "what the teacher does", in other words, about how the
teacher's behaviors reflect her beliefs with respect to the teaching and learning of

. mathematics and the role of instructional materials.

Beliefs Instrument. The Likert-scale, beliefs instrument designed and validated by
Ibrahim (1990) was translated into Spanish and adapted to be applied to the population
of mathematics teachers to which the teacher observed belongs. This test was applied
twice during both semesters in order to verify the consistency of her answers. This test
gave information about the teacher's position with respect to mathematics and the
aims of mathematics education and was centered in "what the teacher says".

Guided interviews. The interviews held with the teacher were developed during both
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semesters with respect to, on the one hand, a sample of the videos for each semester
and, on the other hand, her answers to the beliefs instrument. The teacher was asked to
comment on her behavior in the videos and her divergent answers in the test. The
information obtained with this instrument was used as a means to contrast and validate
the evidence found through the instruments mentioned above.

Data and Results

Classroom Observation

For the semester previous to the introduction of the curricular innovation based on the
graphic calculators, the teacher dominated the interaction in the classroom. She talked
the majority of the time (67%) an her interventions were centered on the presentation
of mathematical content to the students. The student's interventions took 15% of the
time and were mainly predictable answers to a teacher's question. Few self- initiative
and participation was observed in the group of students. The teacher used to talk dur-
ing long periods of time and established a kind of monologue because she asked and
immediately answered her own questions. Besides, when a student was on the black-
board solving an exercise, she guided the student, corrected his/her mistakes and
explained what was done. The mathematical content of the class was worked through
the teacher's explanations or the solving of mechanical exercises proposed in the text-
book for homework.

In the semester where graphic calculators were introduced, the teacher's interven-
tions were reduced to 57% and the student's spontaneous participation increased. Dia-
logues between the teacher and one student, the teacher and a group of students or
among the students were developed with respect to the mathematical content of the
class. The knowledge was presented through the performance of students on the black-
board when solving the exercises proposed by the textbook. The students sometimes
presented a variation of the original exercise in order to evidence a difficulty they had
in the comprehension of a concept. The teacher allowed the students to go on with
their mathematical discourse, in spite of having made a mistake. She let them realize
their fault or asked questions addressing the point where the mistake was made. She
emphasized the meaning and use of mathematical wording. This reflected a concern of
the teacher for helping the students understand the concepts, but she did not propose
different activities or problems to actually enhace their understanding.

From the evidence shown above, it can be said that there were significant changes
with respect to the teacher's behavior in the classroom. Whereas during the first
semester she dominated the interaction with the students and the latter had little partic-
ipation, during the second one the students leaded the class with their interventions,
questions and doubts. There was also a change in the language used in class: while the
language used during the first semester emphasized the mechanical aspects of the pro-
cedures and algorithms involved in the concepts, the language used during the second
one focuses on the reasons why a given procedure was used, the concepts and the rela-
tion between them. Although there was not a real change in the exercises proposed by
the teacher to be solved in class, there was a change in the way she treated the errors
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made by the students. In the first semester the teacher used to guide the student to an
extent that he/she was not allowed or did not have the opportunity to make a mistake.
On the contrary, during the second semester, she allowed mistakes and built new
knowledge on them. The students participated in the correction of the error and
impose their pace of work. This confirms Gomez and Rico's results on social interac-
tion and mathematical discourse research with the same teacher and group of students
(G6mez and Rico, 1995).

Beliefs Instrument

The 60 items test was applied to a sample of 33 from the total population of 58 teach-
ers of the Department of Mathematics of the Universidad de los Andes. Factor analy-
sis of the answers determined five factors: The first factor grouped 8 items explaining
14.9% of the variance. These items describe mathematics as a body of truths made of
logical steps not necessarily mechanical, and related to concrete things. The second
factor included 10 items explaining 12.1% of the variance. These items depict mathe-
matics as a set of universal rules and laws and an activity where everything must be
demonstrated. The third factor gathers 8 items explaining 10.3 of the variance. Mathe-
matics in this factor are a set of truths whose validity and development depends on
people. The fourth factor joins together 4 items explaining 9.5 of the variance. These
items describe mathematics as an activity with practical applications, where some
basic skills are required. And the fifth factor is composed of 5 items explaining 7.6%
of the variance. The items describe mathematics as an human created activity where
knowledge is being built. Mathematics furnishes people with mental structures. These
five factors were associated with the five views of mathematics stated in the Beliefs
System Typology.

This factor groups were taken as the reference to compare the answers given by the
teacher to the test in both semesters. As a result of the comparison of the teacher's
answers with respect to the answers obtained from the sample, a number representing
her position within each factor was obtained. A paired proof (p=0.05) of these values
showed that there was no significant difference between them. Therefore, no changes
in the beliefs of the teacher with respect to mathematics and the aims of mathematics
education were observed.

.Factor
'Semester

First

Second

I

'

H I F2
Progressive I Industrial

educator i trainer

1.090 I 6.171

1.939 I 3.339

F3 ! F4 !

Technological I Old
pragmatist humanist

1.372 I 4.014 I

1.933 I 4.938 I

F5
Public

educator

-5.188

-4.400

Guided interviews

The data collected in the interviews supported the findings presented above. With
respect to her change in behavior during the second semester, the teacher expressed
surprise for having behaved in a way she was not used to. Nonetheless, her explana-
tions to this fact relied on external factors such as the group of students. Some reasons
for her behavior were related with her interaction with the researchers who were also
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teaching the same Precalculus course and experimenting with calculators. She clearly
noticed a difference in the dynamic of the class, motivated by the graphic calculator.
The following sentences support these ideas:

R: During a meeting with the researchers you expressed a surprise in relation to the students'
participation in class. Do you thing that such a participation was caused by something you did
or because their were participative?
T: I think there were two reasons. On the one hand, the human part, I mean, the group itself
was participative and that is very relevant. On the other hand, I have never used this group
work system. One usually makes students work on the blackboard and in small groups during
workshops, but that is not permanent. But when they frequently work in groups, they know
each other and, therefore, they interact even more. Nonetheless, this active ifiteraction and
participation is impossible if they are not participative.
R: And calculators, did they have a part on that interaction?
T: I would say that yes. Yes, they help, and I wish they helped more. Why do they help? First,
because they give the students an incredible security f...1 They trust the calculator or question
the teacher more than what they were used to, when the calculator shows them an unexpected
result. I would say that the calculator changed my thinking a lot and this change was obviously
supported by the methodology one has to follow. I mean, I was an open enemy of calculators in
the classroom, and in part this experience confirmed what I thought. In order to make calcula-
tors a really useful tool, the whole class system has to change. Every thing, the methodology,
the exercises, the role of the teacher. f...1 Because i f I teach in exactly the same way I used to,
calculators worth nothing.

In spite of having reflected this changes in behavior associated to her views on the
teaching, learning and role of instructional materials, the interviews on the beliefs
instrument sustained the lack of change with respect to her beliefs about mathematics
and the aims of mathematical education. The teacher was unable to clearly support the
differences in the answers and, when she was directly asked about the nature of math-
ematics, she answered:

R: So you agree on this, that mathematics are mainly assumptions, laws and general rules...
T. Suppositions, yes, they have something of that. Mathematics have to have assumptions,
laws, rules. But 1 would not say they are only that. Now, why do mathematics exist? Well, I
would say mathematics almost give, oh yes, they give an order, like a justification; they are the
method that was found, let's call it that way, to give an order, a justification, some proofs and
that is what has organized, ruled the situations we live 1...] I think mathematics are the only
way and by now no other has been found to give an ordered organized structure to go from one
stage to another.

Interpretation
The results presented in the previous section with respect to the beliefs system of the
teacher observed show that during the first semester she was clearly sharing the posi-
tion of the "industrial trainer". Her beliefs with respect to mathematics and the aims of
mathematics education were associated with a dualist position in which mathematics
are a set of unquestionable, accepted truths and that mathematics education aims at the
mechanization of basic skills. Her behavior also reflected a sharing of this position
because of her insistence on assigning repetitive exercises to train the students with.
She definitely rejected calculators.

In the second semester, there was an alteration in her beliefs system. This alteration
may not be considered as a real change of her belief system because, despite her
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changes in behavior, her beliefs about mathematics did not suffer a modification. With
respect to this last point, she continued sharing an "industrial trainer" position. But her
behavior tended to be that of the "public educator". This fact and her perception of her
own behavior show that the curricular innovation based on the graphic calculators
altered her way of interacting with students, but was not enough to change her beliefs
as a whole, at least during this short period of time.

Conclusions
In general, the present research showed that the participation of the teacher in the
curricular innovation involving graphic calculators induced some modifications in
what she did and said, but no significant changes in what she thought. The continuity
of her "industrial trainer" position about mathematics, its educational aims, and the
shift towards a more constructivist, relativist view of the learning, teaching and mate-
rials reflect a "destabilization" on her beliefs system, but not a real change. Besides, a
deep transformation.in cognitive structures requires more time to be achieved. And
change is even slower when those structures are unconscious.

The most significant achievement reached by the teacher was the beginning of a
questioning concerning her beliefs. During the six months of the curricular innovation,
she began to be aware of the possible approaches to the teaching and learning of math-
ematics. One year after the experience, she clearly revealed a different and more
coherent perception of her professional practice. On the one hand, her comments on
mathematics teaching and learning as well as the activities she proposes to her stu-
dents in all her courses are closer to a problemsolving, constructivist view. On the
other hand, she has been studying both theoretical and research papers on mathematics
education and seems to be concerned about the knowledge of this discipline.

Discussion
A final discussion about the issues of teacher's beliefs change in relation to the curri-
cular change involving graphic calculators has to highlight the following main points.
First of all, technology itself does not promote change. The dynamics that the new cur-
riculum imposed in the traditional development of the class helped the destabilization
of the teacher's beliefs. The innovation implied the use of small group work, which, in
itself, dynamizes students' interaction and participation. Besides, the autonomy that
the calculators give to students with respect to the teacher's authority for "having the
truth" makes a shift in the way they typically view the teacher. Second, the question-
ing is the result of the conflict arising from the contrast between the teacher's beliefs
and real experience. As some basic elements of the curricular system were altered, she
had to accommodate her behaviors to the new situation. This accommodation gener-
ated a feeling of discomfort which lead her to question her traditional way of behav-
ing. Third, this questioning also dealt with her knowledge about some issues of
mathematics education for finding answers to her doubts. She manifested her lack of
didactical knowledge:

T Iln class I I do what I knew when I made my teaching practicum here in the University, a
long while ago. I mean, the only moment / had a guidance was when I was a student. /
graduated, imagine, several years ago and I still have the same teaching system. Things
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change. I mean. I didn't lire classes nor touch a hook for It) years. I assume many things and
my reality is that I dash against my students when I realize my assumptions are not valid any
more.

However, she perceived her practice could have a different support and asked for spe-
cialized assistance from the researchers. Finally, the process of beliefs change is slow
and requires time to reach stability, as well as a constant motivation for the teacher to
keep evolving through a permanent exchange between experience and beliefs.

References

Amidon, P. (1971) Nonverbal Interaction Analysis. A method of systematically observ-
ing and recording nonverbal behavior. Minneapolis: Paul S. Amidon and Asso-
ciates.

Ernest, P. (1991). The Philosophy of Mathematics Education. London: The Falmer
Press, 1991.pp. 603-612.

Fernandes, D. (1995). Analyzing four preservice teachers' knowledge and thoughts
through their biographical histories. In Meira, L. & Carraher, D. (Eds.) Proceed-
ings of the 19th International Conference for the Psychology of Mathematics
Education Recife: Universidade Federal de Pernambuco, pp. 162-169 (Vol. 2)

G6mez, P., Rico, L. (1995). Social interaction and mathematical discourse in the class-
room. In Meira, L., Carraher, D. Proceedings of the 19th PME Conference. Rec-
ife: Universidade Federal de Pernambuco, p.1-205.

Ibrahim, Hashem Ibrahim. (1990). A multidimensional mathematics belief instrument
with content and construct validity and its application to elementary and sec-
ondary preservice teachers. Ann Arbor. UMI Dissertation Services, 1993.

Pehkonen, E. (1995). What are the key factors for mathematics teachers to change. In
Meira, L. & Carraher, D. (Eds.) Proceedings of the 19th International Confer-
ence for the Psychology of Mathematics Education (Vol 2, pp. 162-169). Recife:
Universidade Federal de Pernambuco.

Robert, A. et Robinet, J. (1989). Representations des enseignants de mathematiques
sur les mathematiques et leur enseignement. Cahier de DIDIREM, N° I. Paris:.
IREM Paris VII.

Thompson, A.G. (1984). The relationship of teacher's conceptions of mathematics
teaching to instructional practice. Educational Studies in Mathematics. 15, pp.
105-127.

Thompson, A.G. (1992). Teacher's Beliefs and Conceptions: A Synthesis of the
Research. En Grouws, D.A. Handbook of Research on Mathematics Teaching
and Learning. New York: Macmillan, pp. 127-146.

4 370



CONDITIONAL PROBABILITY AND THE LEVEL OF SIGNIFICANCE

IN THE TESTS OF HYPOTHESES

A. Vallecillos and C. Batanero

University of Granada, Spain

ABSTRACT
In this paper we present a study of university students' errors concerning the

significance level in statistical tests, to which much research work has been
dedicated both in education and experimental methodology. In depth interviews with
selected students show the persistence of conceptual errors concerning the level of
significance in students with a good understanding of conditional probabilities.
These errors seem to be produced by the "illusion of probabilistic proof by
contradiction" (Falk and Greenbaum, 1995) as well as by students'
misunderstanding of some key concepts in the tests of hypotheses.

RESUMEN
En este trabajo presentamos un estudio realizado sobre errores referidos al

nivel de significacicin en un test de hipotesis, tema al que se ha dedicado mucha
investigaci on en education y metodologia experimental. Una serie de entrevistas
en profundidad realizadas con una muestra seleccionada de estudiantes
universitarios pone de manifiesto la persistencia de errores conceptuales sobre este
tema en estudiantes con una buena comprension de la probabilidad conditional.
Estos errores parecen ser producidos por la "ilusion de la prueba probabilistica
por reduction al absurdo" (Falk y Greenbaum, 1995), asi como por los errores
conceptuales de los estudiantes sobre conceptos claves en el test de hipotesis.

BACKGROUND

Hypotheses testing is a major methodological tool for decision-making and

for research in different sciences. However, many authors have described errors in

the use of this technique, and, due to the risk of reaching invalid conclusions, have

criticized its use (as a summary, see Morrison and Henkel 1970). One key aspect

in the logic of hypothesis testing is the significance level, which is defined as the

"probability of rejecting a null hypothesis, given that it is true". That is, a=13(reject

Ho' Ho is true). A particular misconception, consisting in the interchange of the

events in the conditional probability defining the significance level has been widely

described (Birnbaum, 1982; Falk 1986; Vallecillos and col., 1992). This error
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consists in the mistaken interpretation of the level of significance as "the probability

that the null hypothesis is true, once the decision to reject it has been taken", that

is, in interpreting a as P(Ho truelHo rejected). Difficulties in discrimination between

the "two directions" of conditional probabilities have been recognized by Diaconis

and Freedman (1981), who labeled this misinterpretation as "the fallacy of the

transposed conditionaP'.- Falk (1986) suggested that, in the particular case of

significance level, the verbal ambiguity in the term "Type I error" may also provoke

confusion between the two opposite directions of the conditional probabilities

among the students, who may believe that they are dealing with the probability of

a single event. According to Menon (1993), the phrase "Type I error" induces the

idea of only one event and, therefore, people tend to forget that they are dealing

with a conditional probability, which necessarily involves two events. This induces

error when interpreting the significance level in terms of the conjunction of the two

events, "the null hypothesis is true" and "the null hypothesis is rejected" in either

of the following ways: 1) The null hypothesis is true and it is subsequently rejected;

or 2) The null hypothesis is rejected and it is subsequently found to be true.

Falk and Greenbaum (1995) present a critique of the logical structure of

statistical tests, analyzing the possible causes of the persistence in using the

significance test, in spite of the misconceptions that have been described. They

suppose this is due to the "illusion of probabilistic proof by contradiction", based

on a misleading generalization from logical reasoning to statistical inference. This

generalization may be explained by the seemingly parallel arguments in proof by

reduction ad absurdum and that of rejection of the null hypothesis. Falk and

Greenbaum attribute the prevalence of this illusion to the following intrinsic

cognitive mechanism: similarity of the reasoning in statistical tests to modus tollens

reasoning; verbal ambiguity in describing the type of errors associated with the test

of hypotheses and the wish of researchers to rule out chance.

RESEARCH PROBLEM AND METHODOLOGY

The main objective of our study,was to deepen in the analysis of the errors

37$
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referring to the interpretation of the level of significance and its relationships with

the understanding of conditional probabilities. It is part of a wider study including

a larger sample of students and questions described in Vallecillos (1994). Seven

university students were asked to complete the questionnaire included as an App

endix. The students were taking a major in Medicine at the University of Granada

and had studied Statistics for a complete year. Their participation in our research

was voluntary and we asked them to carefully study the test of hypotheses

beforehand. They where selected among the better students in their group. Once

they completed the questionnaire, each student was interviewed for about half an

hour. In particular, we questioned the students about their understanding of

conditional probabilities, the possibility of computing the probability of a hypothesis

as a result of a test and the procedure required to do this computation. Another

point of interest was the assessment of the students' discrimination between the

statements in items I and 2 in which Birnbaum(1982) has reported lack of

discrimination by the students. We also investigated whether the students considered

one of these statements to be equivalent to the definition of the significance level

they were taught. Finally we suggested the students to compare the two probabilities

involved in paragraphs a) and b) in the medical diagnosis problem and to describe

the similarities of this situation with the test of a hypothesis.

RESULTS AND ANALYSIS

Interpretation of conditional probabilities

All the subjects, except Student 7, correctly solved the diagnosis problem and

none of them had difficulty when interpreting the conditional probabilities in

questions a) and b) of this problem: "They are just the reverses; They mainly differ

in the conditioning event, in the sense that, in the first question, the conditioning

event is to be suffering from cancer and in the second.... the test being positive"

(Student 5). They were also able to explain and to present correct and meaningful

examples of the difference between an ordinary probability and a conditional

probability: "For example, an illness and a risk factor to assess whether this illness
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is influenced or not by this risk factor, this would be a conditional probability. A

simple probability would be the incidence of a given illness in a population"

(Student 7). They didn't consider the existence of only one event in the expression

"probability of Type I error", and they were conscious that in a conditional

probability there are two different events involved: "Only one event? I don't

understand you. Here there are a conditioning event and another event that is

conditioned" (Student 5).

In general our students could interpret the diagnosis problem from a

hypothesis testing approach: "Error a, the probability of accepting that a person has

cancer when he/she has no cancer, when the hypothesis of having no cancer is

true", (Student 3). "/ should identifr the false negatives with error /3" (Student 6).

Moreover, this student wrote: "a = P(H, I H,) = P(H,nlio) / P(H0) ", when he was

asked to compare his answer to question c) of the problem with the possible errors

in hypothesis testing. Consequently, he not only realized that he was dealing with

a conditional probability, but he wrote the general formula to compute this

probability.

To sum up, our students did not believe they were dealing with only one

event, neither they wrongly interpreted the conditional probability involved in the

medical diagnosis problem. Moreover, they were able to correctly compare these

probabilities with the definition of the significance level. Only Student 4 showed

some difficulty related to verbal ambigiiity and Student 7 exchanged his responses

to questions a) and b).

The definition of the level of significance

In general, our students did not consider Items I and 2 to be equivalent,

although this did not imply a correct interpretation of the significance level. We

found a variety in their interpretations: Student 1 considered both Items to be false;

Student 5 considered both Items to be true, but not equivalent; Student 4 responded

consistently and correctly to both Items, clearly distinguishing the conditioning and

conditioned event; Students .2, 3,6 and 7 considered Item 2 as false and Item 1 as
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true so that they seemed to exchange the events in the conditional probability

defining a. Nevertheless, as we have remarked, all students except Student 7

interpreted the conditional probabilities correctly. In general, for these students the

level of significance was associated with the certainty of the null hypothesis and,

for some of them, "accepting the alternative hypothesis" was not equivalent to

"rejecting the null hypothesis": "The level of significance is associated with a

decision in favor of H,, the probability of being wrong when accepting H,, in the

case of Ho being true. For Ho, we should consider error (3" (Student 3). In the same

way, for Student 5 Item 2 was true because it referred to the truth of the null

hypothesis. This could explain the apparent inconsistency of some students'

responses to Items 1 and 2 and the fact that the argument suggested by Falk (1986)

and Birnbaum (1982) did not appear explicitly in the analysis of our students'

arguments (Vallecillos, 1994).

Confusion between the null and alternative hypotheses

There was some inconsistency between the properties assigned by the students

to the null hypothesis, at a theoretical level, and the applications of these properties

in the medical diagnosis problem. Although our students considered that the null

hypothesis is stated only to be discarded, they chose "having cancer" as the null

hypothesis, when we suggested them to interpret this problem from the hypothesis

testing perspective. However, in medical diagnosis the hypothesis to be rejected is

"to have good health", because, usually, a medical test is not prescribed unless the

presence of some illness is suspected. Moreover, in the logic of the test of

hypotheses all the computations are done assuming the null hypothesis is true, and

in the medical diagnosis problem "to have cancer" is less probable in the whole

population than having good health.

Illusion of probabilistic proof by contradiction

All the students, except Student 2, were convinced of the possibility of

computing the probability of a hypothesis, 'so that they could be classified as

sharing the "illusion of the probabilistic proof by contradiction" (Falk and
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Greenbaum, 1995): "The test establishes that this is true with a given probability

", "It establishes the probability of trueness of the hypothesis" (Student 1). In some

cases, such as Student 1, this belief was reinforced by the interpretation he accorded

to the p-value. He conceived the p-value as the probability that the null hypothesis

was true (and 1-p as the probability of the alternative hypothesis being true). Other

subjects, such as Student 3, suggested a frequential procedure to compute this

probability: "I would take many samples and 1 would check in how many of them

the hypothesis is fulfilled". Consequently, the misinterpretation of the level of

significance, in our students was due to their confusion between the null and the

alternative hypotheses and to their belief in the possibility of computing the 'a

posteriori' probability of the hypothesis, given the sample data. It was consistent

with their conception of the overall logic of hypothesis testing. There was no

confusion in the conditional probabilities P(rejecting Ho I given Ho is true) and P(Ho

be true I Ho has been rejected), but the students interpreted the level of significance

as this second probability, i.e., the 'a posteriori' probability of the hypothesis, given

the data.

CONCLUSIONS

In this paper, we have presented the main results of an experimental study on

the interpretations given by university students to the significance level in

hypothesis testing through the analysis of interviews. The results of the interviews

permitted us to study the different explanatory factors that could induce the

misinterpretations of the level of significance, suggested by Falk (1986) and Falk

and Greenbaum (1995). In our sample it was not possible to maintain the

supposition of confusion in the conditional probabilities defining the level of

significance. The verbal ambiguity could not induce the idea of a simple probability

referring to only one event or to the conjunction of two events. Our results reinforce

the attribution of these difficulties to the "belief on the probabilistic proof by

contradiction" described by Falk and Greenbaum (1995) as well as to some

confusion between the roles of the null and alternative hypotheses. Our students did
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not consider the test of hypotheses as a decision process, but as a mathematical

procedure of (probabilistic) proof of a hypothesis whose trueness or falseness had

to be established (Vallecillos, in press).

This lack of understanding is 'reasonable', if we consider the radically

different nature of statistical reasoning as compared to the deductive reasoning in

other parts of Mathematics. Other reasons are due to semantic difficulties and to the

diffusion of the same errors in some text books (Brewer, 1986). Finally, the

controversies within the philosophy of science (Rivadulla, 1991; Lehmann, 1993)

concerning the possible inductive nature of statistical reasoning and the errors in

applying statistical inference in research work are evident signs of the

epistemological difficulty of the subject.

All these findings point to the complexity of the meaning of statistical tests.

Failing to acquire fundamental aspects of concepts involved in this procedure turns

out to be the main factor that could explain the wide misuse and misinterpretation

of tests of hypotheses. Consequently, we suggest the need to reinforce the teaching

of these topics, which would allow the students to acquire the "elements of the

meaning" (Godino and Batanero, 1994) of hypotheses testing, to overcome the

biases and errors described and would contribute to the correct application of

statistical inference in their future professional work.
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Appendix: Questionnaire
Item 1:

A level of significance of 5% means that, on average, 5 out of every 100 times that we
reject the null hypothesis, we shall be wrong (True/False). Reason your answer:
Item 2:

A level of significance of 5% means that, on average, 5 out of every 100 times that the
null hypothesis is true, we reject it (True /False). Reason your answer.
Medical Diagnosis Problem:

In a hospital, the effectiveness of a diagnostic test to detect cancer has been studied in a
sample of 3,000 volunteers. 1,000 of these subjects suffered from cancer and 2,000 were healthy
people. In the following table we show the results of the test:

Results of the cancer diagnostic test

Subject group Positive Negative Total

Cancer 900 100 1000
I lealthly 20 1980 2000

Total 920 2080 3000

a) Suppose one of these subjects has cancer. What is the probability that his/her test
produce a positive result? b) If we take at random one of the positive tests in this sample, what
is the probability that the result corresponds to a cancer patient? c) What kind of diagnosis errors
might you have in this test? What are their probabilities?



STUDENTS' AWARENESS OF THE DISTRIBUTIVE PROPERTY

Nelis Vermeulen Alwyn Olivier and Piet Human
Cape Technikon, Cape Town University of Stellenbosch, Stellenbosch

In this paper we briefly compare the role of the distributive property in arithmetic
calculation and in algebraic manipulation. We formulate a model describing
different levels of awareness of the distributive property. We describe a teaching
experiment to facilitate students' awareness of the distributive property and discuss
the outcomes of this experiment.

Introduction

Students' difficulties in learning the basic ideas of early algebra has been well
documented. Kieran (1989) emphasises that an important aspect of this difficulty is
students' difficulty to recognise and use structure. Structure includes the "surface"
structure (e.g. that the expression 3(x + 2) means that the value of x is added to 2 and the
result is then multiplied by 3) and the "systemic" structure (the equivalent forms of an
expression according to the properties of operations, e.g. that 3(x + 2) can be expressed as
(x + 2) x 3 or as 3x + 6).

Kieran sees algebra as the formulation and manipulation of general statements about
numbers, and hence hypothesises that children's prior experience with the structure of
numerical expressions in elementary school should have an important effect on their ability
to make sense of algebra. Booth expresses the same view:

...a major part of students' difficulties in algebra stems precisely from their
lack of understanding of arithmetical relations. The ability to work
meaningfully in algebra, and thereby handle the notational conventions with
ease, requires that students first develop a semantic understanding of
arithmetic. (Booth,1989, p. 58)

From this perspective Booth formulates two tasks for research:

To examine students' recognition and use of structure and how this recognition may
develop.

To devise new learning activities and environments to assist students in this
development.

Our study shares the same assumptions about the importance of understanding numerical
structure as a prerequisite for understanding algebraic structure. This paper reports on a
five year study which addressed Booth's two research tasks, as it relates to the
development of students' awareness of the distributive property of operations.

4 - 379 $5.



The relationship between arithmetic calculation and algebraic manipulation

The essential nature of any non-counting computational algorithm is that it is a set of rules
for breaking down or transforming a calculation into a set of easier calculations of which
the person already knows the answers (Olivier 1992). This process of changing the task to
an equivalent but easier task involves three distinguishable sub-processes, illustrated here
for a procedure to calculate 8 x 23:

1. Transformation of the number(s) to more convenient numbers, e.g. 23 = 20 + 3.

2. Transformation of the given computational task to a series of easier tasks, e.g. the
instruction 8 x (20 + 3) is transformed to the equivalent task 8 x 20 + 8 x 3.
The ability to transform the task to an equivalent task depends on the student's
awareness of certain properties of operations, here the distributive property of
multiplication over addition.

3. Computation, e.g. 8 x 20 = 160; 8 x 3 = 24; 160 + 24 = 184.
These final calculations are performed at the "automatic" level, i.e. without much
thinking and requires knowledge of basic number facts.

The process of calculation does not necessarily follow this seqUence. The way you initially
decompose the numbers depends on your anticipation, "looking ahead" to the
transformation you intend in phase 2 and the basic facts you are going to use in the final
phase of the calculation. Such a computational strategy therefore includes a realisation of
the significance or usefulness of the transformations.

The same task transformation underlies "algebraic manipulation": Finding the product of
8 and 2x + 3 involves the transformation of the product 8(2x + 3) to the sum
8 x 2x + 8 x 3. Human (1988) illustrates this similarity as follows:

Arithmetic Algebra
8 x 23 = 8 x (20 + 3) Transformation of number(s) 8(2x + 3)

= 8 x 20 + 8 x 3 Transformation of task = 8 x 2x + 8 x 3
= 160 + 24 = 184 Calculation

In both the arithmetic and the algebraic case, the transformation from a product to a
sum is determined by the distributive property. Explicit awareness of this principle is
essential for students when they embark on a first course in elementary algebra. Equally
important for these students is understanding that the similarity is confined to the sub-
process of task transformation, i.e. that algebra is not "calculation with letters".

Awareness of the distributive property in the elementary school

The traditional standard algorithm for long multiplication involves the same
transformations as described above. However, it is probably non-controversial to say
that the algorithm has traditionally been taught instrumentally (Skemp, 1989), that the
transformations were very much "hidden", and that students in traditional classrooms
were not explicitly aware of the logic or the significance of the underlying transformations.
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On the other hand, in reform classrooms in South Africa no specific strategies are
prescribed and strategies are not "taught". Students are free to construct their own
computational strategies. In the process they invent and use a variety of strategies (see e.g.
Murray, Ohvier & Human, 1994). This is a typical strategy used by young children to
calculate 8 x 23:

8x 10 = 80
8x 10 = 80
8 x 3 = 24

80 + 80 + 24 = 184

Strategies such as these that children in reform classrooms use in solving word problems
generally indicate that they have a sound intuitive grasp of the properties of operations that
underlie their strategies. Verigiaud (1988) refers to students' intuitive use of properties of
operations as "theorems-in-action": Theorems-in-action are physical or mental actions
performed by a student, often in a disguised or subtle way, that provide behavioural
evidence of implicit knowledge of a more formal property or method or "theorem" of
mathematics.

Students' use of theorems-in-action in their calculations led us to hypothesise that students
in reform classrooms are explicitly aware of the distributive property. However, this is not
substantiated by research. In interviews with grade 5 students (Vermeulen, 1991) only 2 of
16 students (13%) responded positively to the question: "Will 37 x (13 + 26) produce the
same answer as 37 x 13 + 37 x 26?". This was later followed by a questionnaire to grade
5 and 6 students which included the following question:

Will the following produce the same answers? Supply a reason for your answer.

1. 37 x 876 and 37 x 344 + 37 x 532

2. 58 x 356 and 58 x 300 + 58 x 50 + 58 x 6

159 of the 240 students (66%) responded positively to both questions and could state a
meaningful reason. We attributed the difference in the results of the interviews and the
questionnaire to the use of brackets during the interviews. These results motivated the
present teaching experiment to attempt to explicate elementary school students' intuitive
knowledge of the distributive property.

Based on our observations and our theoretical framework, we designed the following
model for levels of awareness of the distributive property:

Level I: The spontaneous utilisation of the distributive property: When elementary school
students who are free to construct their own computational strategies in arithmetic
spontaneously use the distributive property.

Level 2: The recognition of the distributive property: When a student responds
positively to questions like "Will 37 x 52 and 37 x 30 + 37 x 22 produce the same
answer?", and can supply a meaningful reason (e.g. 52 is broken down into 30 + 22).
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Level 3: The intentional utilisation of the property: The student intentionally investigates
whether utilisation of the property will produce an equivalent number expression which is
easier than the original one. Such a student will, for example, replace the expression
27 x 13 + 27 x 7 by the equivalent expression 27 x 20 in order to simplify the calculation.

Level 4: The generalisation of the property: This entails two different aspects:

The recognition that the distributive property applies to all real numbers, including
very large numbers, decimal and common fractions, and (for older students) also to
numbers represented by letter symbols.
The ability to articulate the distributive property.

Level 5: The explanation of the property: Level 5 awareness is demonstrated when a
student who has demonstrated level 2 awareness, can supply a meaningful reason for
questions like: "Why do we get the same answer when we multiply both 30 and 22 by 37,
as when we multiply 52 by 37?" The distributive property is of course an axiom of the
real number system, and therefore cannot be proved. However, students' understanding of
the property is based on their earlier concrete experiences. Level 5 awareness will thus be
demonstrated if a student can substantiate the distributive property by referring to or
connecting it to those earlier experiences.

Designing learning activities to explicate the distributive property

During 1994 we executed a teaching experiment which took the form of developmental
'research, as described by Gravemeijer (1994). We attempted to design learning activities
through which we hoped to explicate grade 6 students' knowledge of the distributive
property. By comparing pre-test and post-test results and studying student responses in
class, we continuously tried to improve these activities such that they would enable
students to explicate their theorems-in-action and lead to a higher level of awareness.

Our frame of reference is very much constructivist. Our intention in designing these
activities was therefore that the activities should lead to cognitive conflict and that
accommodation should take place. The challenge in designing the activities was evidently
how to create such a disequilibrium that would facilitate successful reflection or reflective
abstraction by the students (Inhelder, 1974).

It should be stressed that here it is not about forming new cognitive structures (in the
Piagetian sense of the word), but rather to make students aware of knowledge which they
do possess, but of which they are not explicitly aware. As such it could be argued that an
attempt was to be made to transform "unknown" knowledge structures into "known"
structures, that is cognitive structures of which students are explicitly aware, and which
can be integrated into their existing cognitive structures.

We now briefly describe and discuss some examples of these initial learning activities:
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Concrete problems: Students solved concrete problems, such as: "9 children each receive
an ice cream of 82.83 and a chocolate of 82.17. What is the total cost?".

Students typically used one of two methods, namely either first adding 2.83 and 2.17 and
then multiplying it by 9, or multiplying each of 2.83 and 2.17 by 9 and then adding the
products. This represents a concrete manifestation of the distributive property. Through
comparing and discussing their different computational strategies, we hoped that it would
address their implicit knowledge of the distributive property.

Decontextualised problems: Students were asked to calculate the answer of a problem
such as 15 x 36. Many students would break down the 36 into 30 + 6, and then multiply
15 with both 30 and 6, hence using the distributive property. When students were
challenged as to why he or she does it in such a way, and whether it is correct to do it like
that, most students gave answers like: "It works out correctly, so surely it is correct?".

In our opinion, based on our observations of student reactions, decontextualised problems,
as well as concrete problems, representing slightly different manifestations of the
distributive property, did not succeed in bringing learners in touch with their theorems-in-
action of this property. We were convinced that is was mainly because in both cases we
were not able to create a disequilibrium (in Piaget's sense of the word), thereby not
succeeding in forcing students to reflect.

Two equivalent number expressions: "Predict (do not calculate) whether the following
two number expressions will produce the same answer. Give a reason for your answer".

25 x 135 and 25 x 98 + 25 x 37

A variation of this question was to first predict, and then calculate the answer of each
expression using a calculator.

To the first type of questions, a number of students readily responded that the answers
would be the same, because the 135 was "broken up". When asked why one may "break
up" a number, and then multiply with each of the "broken up parts", the answer was once
again to the nature of: "It works out correctly, so surely it is correct?".

Intentional application of the distributive property: Here we gave students exercises
such as: Calculate without a Calculator: 43.6 x 9 + 43.6 x 5 + 43.6 x 6. Sometimes we
would add: "...using the easiest method".

This type of activity did not seem to be successful even after numerous exercises of the
first three types described above, only the minority of students would intentionally first add
the 9, 5 and 6, and then multiply the sum by 43.6.

Moving towards a teaching strategy

During 1994, through our observation of students' reactions, and our own reflection,
coupled with our constructivist framework of knowledge, we became convinced that a
successful teaching strategy should be based on the following principles:

4 - 383



A powerful cognitive conflict should be created.

Organised groupwork should be utilised, facilitating better opportunities for students to
reflect.

Calculators should be actively integrated into the learning process, supplying necessary
feedback as a source of confirmation or cognitive conflict.

A teaching strategy which accommodated these principles was designed and implemented.
We now briefly describe the essential characteristics of the teaching strategy:

Students solve about three concrete problems. Essentially, there are two approaches to
do the calculation, as explained previously. Students are then required to discuss and
compare their answers and methods with group members, and are led to recognise that
there are essentially two methods of calculation.

Students then calculate the answers of given pairs of equivalent number expressions,
using calculators, similar to the example described above. They are required to compare
the answers of the two number expressions. For most students it was a surprise to
realise that the answers of the two number expressions were equal. They were then
challenged to explain why the two answers were equal. In our opinion, based on our
observation of the students' reactions, this created quite a powerful disequilibrium, and
the subsequent effort to try explain this result, could lead to a relatively high level of
reflection, especially when students worked in groups.

To facilitate the process of reflection, students were referred to the previous assignment,
that is, the concrete problems. They were challenged to look for and describe
similarities between that situation and the current one. Hence, reflection is forced onto a
higher level, since they have to reflect on two apparently unconnected manifestations of
the distributive property. In this process of reflecting about their reflection of the two
separate situations, it is hoped that they will get in touch with their theorems-in-action
about the distributive property.

More problems, stressing the same principle, are then tackled in groups in order to
explicate students' awareness even further.

Evaluation of the teaching strategy

During 1995 we implemented the teaching strategy in nine schools, involving 645 students
from grades 3 to 7. Students worked together in groups of about four, and each student
received a set of work sheets. There were seven work sheets in total, each consisting of
four parts.

In evaluating the teaching strategy, we followed a typical pre-test, treatment, post-test
design. As described above, students in reform classrooms have a good intuitive grasp
of the distributive property at level 1. Given that the objective of the study was to
increase students' level of awareness of the distributive property, we designed
questions to test level 2 and 3 awareness. We did not test for level 4 and 5 awareness.
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There were essentially two types of questions in both tests, determining level 2 and 3
awareness. Examples of the type of question are:

Level 2: Predict whether the following two number expressions will produce the same
answer. Give a reason for your answer.

37 x 150 and 37 x 95 + 37 x 55

If a student responded positively and was able to supply a meaningful reason, he or she
was categorised as displaying level 2 awareness.

Level 3: Calculate, without using a calculator, the value of the following. It is
important to show your work:

18.3 x 13 + 18.3 x 7

If a student first added 13 and 7, and then multiplied the sum (20) by 18.3, he or she
was categorised as displaying level 3 awareness. A student could fall in both categories.

Results and discussion

The results indicated that grade 6 and 7 students experienced a substantial increase in
their awareness of the distributive property, as the sample data below illustrates. The
teaching strategy was therefore fairly successful.

Results for grade 6 and 7 students*

PRE-TEST POST-TEST

level 2 awareness level 3 awareness level 2 awareness level 3 awareness

N % N % N % N %

100 54.3 21 11.4 136 73.9 82 44.6

* 184 students wrote the pre-test and the post-test

The outcomes for grade 3 and 4 students were, however, very inconsistent, leading us
to conclude that this teaching strategy did not benefit them in acquiring a higher' level
of awareness of the distributive property. A possible explanation for this is that the
younger students found the calculations in the test questions very complex their thought
processes were occupied in trying to manage the calculations and not towards reflection on
these thought processes. Using calculators in the test situation may change this.

Also, and this applies equally to the grade 6 and 7 students, we observed during the
teaching experiment that the level of classroom discourse (Cobb, 1987) was a critical
factor in determining the success of the teaching strategy. It became evident that left
on their own, groups seldomly reached the level of discussion necessary for in-depth
reflection to occur. It is clear that the teacher has a vital role to play in steering the
group discussions in the correct direction.
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PRE-SERVICE TEACHERS' CONCEPTIONS AND BELIEFS ABOUT THE
ROLE OF REAL-WORLD KNOWLEDGE IN ARITHMETIC WORD PROBLEM

SOLVING
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ABSTRACT

Recent research has documented that many pupils show a strong tendency to exclude
real-world knowledge from their solutions of school arithmetic word problems. In the
present study a test consisting of 14 word problems - half of which were problematic
from a realistic point of view was administered to a large group of students from three
different teacher training institutes in Flanders. For each word problem, the student-
teachers were first asked to solve the problem themselves, and afterwards to evaluate
four different answers given by pupils. The results revealed a strong tendency among
student-teachers to exclude real-world knowledge from their own spontaneous solutions
of school word problems as well as from their appreciations of the pupil answers.

THEORETICAL BACKGROUND

For several years it has been argued that considerable experience with traditional
school arithmetic word problems develops in pupils a strong tendency to exclude real-
world knowledge from their problem-solving processes. Rather than functioning as
authentic contexts that invite or even force pupils to use their commonsense knowledge
and experience about the real world, school arithmetic word problems have become
artificial, puzzle-like tasks that are perceived as being separate from the real world.
Recent studies by Greer (1993) and Verschaftel, De Corte and Lasure (1994) have yiel-
ded strong empirical evidence for this argument. In these studies, a paper-and-pencil
test consisting of two kinds of word problems was collectively administered to a group
of 11-13-year-old pupils:

standard problems (S-problem) which can be properly modeled and solved by the
straightforward application of one or more arithmetic operations with the given
numbers (e.g., "Steve has bought 4 ropes of 2.5 meters each. How many ropes of
0.5 meter can he cut out of these 4 ropes?"), and

problems in which the mathematical modeling assumptions are problematic (P-
problem), at least if one seriously takes into account the realities of the context
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called up by the problem statement (e.g., "Steve has bought 4 planks of 2.5 meters
each. How many planks of I meter can he saw out of these 4 planks?").

The analyses of the pupils' reactions to the P-items yielded an alarmingly small number
of realistic responses or comments based on realistic considerations (e.g., responding
the above-mentioned "problematic" problem with "8 planks" instead of "10 planks",
because in real life one can only saw 2 planks of 1 meter out of a plank of 2.5 meter).

According to the above-mentioned researchers, this tendency among pupils is

mainly caused and strengthened by the following two aspects of the current instruc-
tional environment: (I) the impoverished and stereotyped diet of standard word pro-
blems, which can always be modeled and solved through the straightforward use of one
or more arithmetic operations with the given numbers; (2) the way in which these
problems are considered and used in the classroom practice and culture, and more
specifically the lack of systematic attention to the modeling perspective by the teacher.

In the present study we focused on a major component of the instructional environ-
ment, namely the teacher. More specifically, we analyzed (future) teacher's

conceptions and beliefs about the role of real-world knowledge concerning the problem
context in the modeling of school arithmetic word problems, as reflected by (1) their
own spontaneous responses to a set of word problems with problematic modeling
assumptions, as well as by (2) their evaluations of pupil answers to these problems that
do or do not take into account relevant real-world knowledge.

DESIGN

Participants were 332 pre-service teachers from three teacher training institutes in
Flanders. About two thirds were pre-service teachers who had just started their first
year of training, while one third were third-year students who had almost completed
their pre-service training.

A paper-and-pencil test was constructed consisting of 14 word problems: seven
non-problematic standard items (S-items) and seven problematic items (P-items), which
are listed in Table I.

Table 1. The seven P-items involved in the study

450 soldiers must be bused to the their training site: Each army bus can hold 36
soldiers. How many buses are needed? (BUSES)
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Bruce and Alice go to the same school. Bruce lives at a distance of 17 kilometers from
the school and Alice at 8 kilometers. How far do Bruce and Alice live from each other?
(SCHOOL)

John's best time to run 100 meters is 17 seconds. How long will it take to travel I

kilometer'? (RUNNER)

This flask is being tilled from a tap at a constant rate. If the depth of the water is 4 cm
after 10 seconds, how deep will it be after 30 seconds? (This problem was accompanied
by a figure of a clearly cone-shaped flask partly filled with water) (FLASK)

A man wants to have a rope long enough to stretch between two poles 12 meters apart,
but he has only pieces of rope 1.5 meters long. How many of these pieces would he
need to tie together to stretch between the poles? (ROPE)

Steve has bought 4 planks of 2.5 meter each. How many planks of 1 meter can he get

out of these planks? (PLANKS)

Carl has 5 friends and Georges has 6 friends. Carl and Georges decide to give a party
together. They invite all their friends. All friends are present. How many friends are
there at the party? (FRIENDS)

The test was given twice to all pre-service teachers, but each time with a different
task. The first time (= Test 1), the student-teachers had to answer the 14 word
problems themselves;. calculations and comments could be written down in a "com-
ments box" below the "answer box". Immediately after they had finished and handed in
this test, they were given Test 2, in which they were asked to score four different
answers from pupils to the same 14 word problems as in Test 1 with either 1 point
("absolutely correct answer"), 0 points ("completely incorrect answer") or 1/2 point
("partly correct and partly incorrect answer"). The four response alternatives to the
seven P-items in Test 2 belonged to four different categories:

Non-realistic answer (NA), which results from the straightforward and uncritical
application of the arithmetic operation elicited by the problem statement (e.g., for
the above-mentioned "planks"-problem, the NA was 10, - the product of 4 times
2.5).

Realistic answer (RA), which follows from the effective and appropriate use of
real-world knowledge about the context elicited by the problem statement (the RA
for the "planks"-problem was 8, the product of 4 times 2).

Technical error (TE), which results from the straightforward and uncritical
application of the arithmetic operation elicited by the problem statement, but which
differs from the NA because of a purely technical mistake in the execution of the
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arithmetic operation(s). (e.g., responding the "planks"-problem with 100 planks in
stead of 10 because of disregarding the decimal number in the multiplication 4
times 2.5).

Other answer (OA), involving an answer that could not be classified into one of the
former categories; for instance, solving the "planks"-problem with the result of a
wrong operation, such as the addition instead of the multiplication with the two
given numbers 4 and 2.5.

At the bottom of each problem, there was a box for writing explanations or com-
ments.

For Test 1, an assessment of the student-teachers' spontaneous solutions to the P-
items was made involving two major categories: realistic reaction (RR) versus non-
realistic reaction (NR). The term "realistic reaction" (RR) refers to each case wherein a
student-teacher gave either a realistic answer (RA), or an answer that was scored diffe-
rently (NA, TE or OA) but that was accompanied by a realistic consideration in the
comments box. A non-realistic reaction (NR) refers to each case wherein no evidence
of activation of real-world knowledge could be found in the answer box nor in the
comments box. The analysis of the pre-service teachers' reactions to the seven P-items
in Test 2 focused on the score (1, 1/2 or 0) given to the realistic answer (RA) and the
non-realistic answer (NA).

RESULTS

Test 1. As expected, the student-teachers demonstrated a strong overall tendency to
exclude real-world knowledge and realistic considerations when confronted with the
problematic word problems. Indeed, only 48 % of all reactions to the seven P-items
from Test 1 could be considered as realistic (RRs). This percentage is considerably
higher than in previous studies with upper elementary and lower secondary school
pupils (Greer, 1993; Verschaffel et al., 1994), where overall percentages of RRs
between 15 % and 20 % were observed. Nevertheless, it remains disappointingly low,
as it implies that in more than half of the cases, the student-teachers solved the P-items
from Test I in a stereotyped, uncritical way, without any consideration for the realities
of the context involved in the problem.

There was a significant difference in the overall number of RRs between the first-
year and the third-year student-teachers in favor of the latter group (t-test, two-tailed, t

3.40, p < .01). However, the overall percentage of RRs remained low in both
groups, namely 45 % and 54 % for the first-year and the third-year students,
respectively. Interestingly, additional t-tests revealed that this difference between both
years was significant in only two of the three teacher training institutes involved in the
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study. This suggests that student-teachers' disposition toward realistic modeling of
arithmetic word problems is at least partially influenced by the courses on mathematics

education received during their pre-service training.

Test 2. The student-teachers' strong disposition toward non-realistic modeling was also

revealed by their evaluations of the realistic answer (RA) and the non-realistic answer

(NA) on the same seven P-items during Test 2. Only in 47 % of the cases the RA

received a score of 1; 6 % of the RAs received a I /2-score and in 47 % of the cases the

RA was scored with a 0. On the other hand, the NA was scored with a I and a 1/2 in

56 % and 26 % of the cases, respectively; only 18 % of the NAs received a 0-score.

Thus the student-teachers' overall evaluation of the stereotyped, non-realistic answer to

the P-items was considerably more positive than for the realistic answer based on con-

text-based conderations.

There was again a significant difference between the first-year and the third-year

student-teachers. The third-year students gave significantly more 1-scores (t-test, two-
tailed, t = 3.29, p < .01) and less 0-scores (t-test, two-tailed, t = 2.63, p < .01) for

the RAs than the first-year students. Correspondingly, the third-year students produced

significantly less 1-scores (t-test, two-tailed, t = 2.30, p < .05) and more 0-scores (t-

test, t = 2.33, p < .05) for the NAs than the first-year students. Additional t-tests

revealed that these four differences between first- and third-year students were
significant in only one of the three teacher training institutes.

Relationship between Test I and Test 2. The previous sections focused on the results

for Test I and Test 2 separately. In this section, we will investigate to what extent the

student-teachers' evaluations of the NAs and the RAs during Test 2 matched their own

performances during Test 1, by analyzing the scores they gave on Test 2 for the RA

and the NA following the 52 % non-realistic reactions (NRs) and the 48 % realistic

reactions (RRs) on Test I separately (see Table 2).

The left part of Table 2 presents the distribution of the different combinations of

RA scorings (1, 1/2 or 0) and NA scorings (1, 1/2 or 0) over the seven P-items of Test

2 for the 52 % non-realistic reactions on Test 1, as well as the distribution of the

scorings for the RA and the NA over the three scores (1, 1/2 and 0).

As expected, we found a strong relationship between the non-realistic reactions on

a P-item during Test I, and the evaluations of the RA and the NA on that item during
Test 2. In 89.3 % of all cases wherein a NR was given to a P-item during Test 1, the

NA to that item was given a I-score in Test 2. Correspondingly, 83.1 % of the NRs

during Test I were followed by a 0-score for the RA in Test 2. The match of a I-score
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for the NA and a 0-score for the RA occurred in no less than 79.3 % of all cases
wherein a P-item from Test I was answered with a NR. Apparently, the NA was
scored with 1 because this response corresponded to the stereotyped, non-realistic
answer the student-teachers had given themselves on this item during Test 1, and they
scored the RA with 0 because they could not understand, and, therefore, appreciate the
context-based considerations underlying this answer.

Ten percent of the NRs to a P-item during Test I was followed by a 1-score for the
RA during Test 2. This suggests that in those cases the confrontation with the RA
during Test 2 had functioned as a scaffold toward (more) realistic modeling. However,
the finding that only 10.0 % of the scorings following a NR yielded evidence for the
scaffolding effect of the confrontation with the RA, can be interpreted as additional
evidence for the strength and the resistance of the tendency toward non-realistic mathe-
matical modeling among student-teachers. Interestingly, these 10 % scorings showing
insight into the appropriateness of the RA during Test 2 as evidenced by the 1-score
for the realistic response alternative - were accompanied by a diversity of appreciations
of the NA (0, 1/2 and I). An explanation for these scoring patterns will be given
below.

Table 2. Combinations of RA scorings (1, 1/2 or 0) and NA scorings (1, 1/2 or 0)
(in percentages) over the seven P-items of Test 2 for the total number of
non-realistic reactions (52 %) and of realistic reactions (48 %) on Test I

NON-REALISTIC REACTIONS (NR)

RA

REALISTIC REACTIONS (RR)

RA

NA 1 1/2 0 Total NA I 1/2 0 Total

1 3.4 6.6 79.3 89.3 1 10.2 3.2 7.4 20.8

1/2 3.8 0.1 2.6 6.5 1/2 42.3 2.0 1.4 45.7

0 2.8 0.2 1.2 4.2 0 32.9 0.4 0.2 33.5

Total 10.0 6.9 83.1 100.0 Total 85.4 5.6 9.0 100.0
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The right part of Table 2 presents the distribution of the different combinations of
RA scorings (1, 1/2 or 0) and NA scorings ( I , 1/2 or 0) over the seven P-items of Test
2 following the 48 % RRs on Test I. As shown in this part of the table, the congruence
between the RRs on Test I and the scorings of the RA and the NA during Test 2 was
less straightforward than for the NRs. On the one hand, the evaluations of the RA were
generally in line with the reactions on Test 1: indeed, 85.4 % of the RRs on Test I
were followed by a I-score for the RA on Test 2.

But the scorings for the NA were rather surprising: only 33.5 % of the subjects
who reacted in a realistic way to a P-item during Test I scored the NA with a 0 during
Test 2 (almost always in combination with a I for the RA). A closer look at Table 2
reveals that one scoring combination occurred even more frequently than the

combination of a I for the RA with a 0 for the NA: in 42.3 % of the cases wherein a
RR was given to a P-item from Test 1, the I score for the RA on that item was
accompanied by a 1/2 for the NA. In addition, the combination "I for RA and I for

NA" also occurred in a substantial number of cases (10.2 %). These results indicate
that in many cases where student-teachers reacted themselves to a P-item in a realistic
manner, they were nevertheless quite understanding and tolerant to elementary school
pupils who interpreted and solved these P-items without seriously taking into account
the relevant knowledge about the context called up by the problem statement. Accor-
ding to their written explanations in the comments box, they thought that it is unfair to
punish a fifth-grader for solving the P-item in a stereotyped, non-realistic manner. This
is illustrated by the following comment accompanying the scoring combination "1 for
RA and 1 for NA" with respect to the runner-item: "I scored alternative D (= the RA:
"It is impossible to answer precisely what John's nest time on 1 kilometer will be")
with 1 because the pupil who gave this answer knows that is not realistic to assume that
John will he able to run at his record speed for 1 kilometer. But I also gave I for alter-
native A (= the NA: "17 x 10 = 170. John's best time to run I kilometer is 170
seconds") because from a purely computational point of view this is the correct
answer."

Interestingly, a considerable percentage of scoring combinations following a .RR
during Test 1 involved a score of 1/2 (5.6 %) or even a 0 (9 %) for the RA. A quali-
tative analysis of the written protocols accompanying these unexpectedly low scores for
the RA (taking into account that the student-teacher had produced a RR on this item
during Test I), revealed that the RA was appreciated so moderately because of its
vagueness; to deserve a better score, the RA should have been more precisely formu-
lated and/or better motivated. This is illustrated in the following exemplarily comment
for a 1/2 -score for the RA on the rope-item ("It is impossible to know how many pieces
of rope you will need"): "In fact the boy who has answered in this way is right because
you do not know how much you will loose for making the ties, but he should have ex-
plained this in his answer".
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CONCLUSIONS

Recent studies have provided ample evidence for a phenomenon whereby children
solving word problems in school often produce answers without regard for realistic
constraints (Greer, 1993; Verschaffel et al., 1994, in press). The present study provi-
des some insight into one of the instructional factors that are considered responsible for
the development of this tendency among children, namely the teachers' own concepti-
ons and beliefs about, the importance of real-world knowledge in arithmetic word
problem solving. While this study convincingly demonstrates that many future teachers
have knowledge and beliefs about teaching and learning arithmetic word problems that
arc problematical from a realistic point of view, it does, of course, not yield direct
evidence that these teacher conceptions and beliefs are responsible for children's strong
tendency to exclude real-world knowledge from their problem solving endavours.
However, based on the recent literature on mathematics learning and teaching (Dc
Corte, Greer & Verschaffel, in press), there is good reason to assume that these teacher
cognitions and beliefs about the role of real-world knowledge in the interpretation and
solution of school arithmetic word problems, have indeed a strong impact on their
actual teaching behavior and consequently on their students' learning processes and
outcomes. Therefore, if we want to connect problem solving in school mathematics to
the experiental world of children as strongly advocated in most current reform
documents related to mathematics education we will also have to stimulate and help
(student-)teachers to construct the proper concepts, skills and beliefs that are needed for
realistic modeling of problem situations and for realistic interpreting of outcomes of
arithmetic calculations, as part of a genuine mathematical disposition.
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Semiotics as a descriptive framework in mathematical domains.

Adam Vile and Stephen Lerman

South Bank University.

This paper reports on ongoing research into the application of a semiotic
perspective to the analysis of meaning-making in mathematics learning. In this
paper we present a version of semiotics, termed developmental semiotics, that
augments a Piercian semiotic framework with Vygotskian notions of the action
of sign and its role in development. We will suggest that developmental semiotics
may he of use for the description of meaning-making in the domain of
mathematics learning. We will present developmental semiotics first as a point
of view and then as a toolkit which may inform analysis of learning in
mathematics education. We will give some brief examples of the use of this
toolkit, arising from a case study in algebra, and discuss some of the
implications that such a perspective may have for mathematics educators.

Introduction

Semiotics, the doctrine of signs" (Deely 1991) appears throughout the
literature in a number of guises. It has two roots, one in structuralism through the
work of Saussure and Barthes and the other in the work of C.S. Pierce, (who coined
the term). Each offers a description of the role of the sign in communication and
meaning-making yet they differ in two crucial aspects. The first difference being in
the action of semiosis, the second in the nature of the analysis. Space does not allow
a full exposition of these differences here, suffice it to say that by virtue of its
diachronic analysis and the tripartite action of semiosis we have adopted the Piercian
perspective, that is the perspective presented by Pierce (in Buehler 1955) Eco (1979)
and Deely (1991) amongst others, for this work. This form of semiotics has I?een
used for philosophical analysis (Deely (op. cit.)) literary criticism (Harris 1992) and
to a limited extent to inform about educational contexts (Groisman et al. (1991) in
science education and Stage (1991) in mathematics education) and mathematics
(Rotman 1991).

Quite apart from the semiotic literature arising from philosophical inquiry,
semiotics has been applied in cultural psychology to describe the role of language
and tools in the mediation of psychological functioning, most notably in the work of
Vygotsky (1977, 1978), an application of Vygotsky's semiotic analysis was presented
at PME (Ohtani 1994). Vygotsky's semiotics arose quite independently of either the
work of Pierce or Saussure and is central to his notion of development towards higher
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mental functioning and scientific concepts. His description of the action of semiotics
closely resembles that of Pierce, and objectifies the diachronicity of the Peircian
method into notions of development. In developing a tool kit for semiotic analysis we
will draw on many of Vygotsky's notions.

Further connections may be drawn between the work of Pierce and that of
Vygotsky when the subject matter of semiotics is considered. Semiotics is about the
action of signs, and signs are ever-present, actually and virtually, within our
experience and culture:

signs perfuse the human being structures and applies those signs, and....the
semiotic that results in their application....is inextricably bound up with context and
culture (Harris 1992 p.8)

Every act of communication is an act of semiosis and the sociocultural view of
knowledge inherent in a V ygotskian perspective is based upon the notion that
meaning-making occurs as a result of semiotic action. Vygotsky sees semiotics as an
act of mediation from the social to the individual through psychological tools
( Vygotsky 1977) and in particular through the word- the cultural unit. Pierce sees
semiotics as a similar tri-partite action which transcends the subject object divide by
way of the interpretant. For Vygotsky the word, for Pierce the interpretant (a sign)
makes meaning.

In this we paper present a synthesis of the semiotic notions of Peirce and
Vygotsky in an attempt to provide a semiotic perspective on meaning-making in
mathematics learning. We will outline the theoretical perspective and then, through
the use of examples taken from a case study, will show how the developmental
semiotic framework may be used to inform meaning making in the domain of
algebra. We will end with some implications of this research.

The developmental semiotic perspective,

Central to a semiotic point of view is the triadic nature of semiotic action. A
variety of semiotic triangles exist (for example see Eco 1979) specifying the
connection between subject and object through a mediating entity. This entity Pierce
termed the interpretant which he defined in the following way

A Sign, or representamen, is something which stands to somebody for something in
some respect or capacity. It addresses somebody, that is creates in the mind of that
person an equivalent sign, or perhaps a more developed sign. That sign which it creates

I call the interpretant of the first sign. (Peirce in Buehler (1955) p.99)

The interpretant is a dynamic sign which represents the meaning made by an
individual in respect of her network of experiences into which a given act of semiosis
is inserted. The interpretant is a meaning laden indicator not only of the meaning held
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by the interpreter but also of the experiences which led to the making of that
meaning. We want to extend this notion even further to ascribe prime. place to the
interpretant not only as the mediator of meaning but of the space in which both
individual and social meanings are made, in other words the space at which the intra
and inter subjectivities meet and in which, as a result, meaning is made.

For example one could take the making of meaning for the equals sign.
Barrody and Ginsburg (1982) have shown that at least two meanings may exist,
operational or relational. Semiotics describes the meaning-making process in terms
of the past experiences of the interpreter and the triadic action of the sign. The sign
<=> will be recognised by the interpreter, probably not iconically (nothing is more
equal than two parallel lines) but more than likely as an opaque symbol which they
have used (experienced) in certain mathematical practices. It may stand to them as a
process to carry out (operational) as a statement of equivalence (relational) or both.
Whatever, they will make a meaning for that sign as a result of experiences of
mathematical practice and of course the current practice in which they are engaged.

Central to this process is the insertion of the act of semiosis into a network of
experiences; in order to address the question concerning the creation of this network
of experiences, which could be classed as the content of the intrasubjective, one must
consider semiosis to act diachronically, and it is at this point that the notion of
development is brought into the frame. Lev Vygotsky (1977,1978) presents a cultural
psychology with semiosis, activity and development as central to the genesis of
higher mental functions. In fact his notion of "scientific" concepts (which act in
higher mental functioning), as concepts that make meaning through links with other
concepts, can be equated with the notion of interpretant, which first acts in semiosis
and then becomes a sign. We want to suggest that the network of experiences is a
web of interconnected interpretants (acting as signs) that have been internalised
diachronically through acts of semiosis.

Developmental, semiotically mediated meaning has been examined by Becker
and Varelas (1992) from within a Vygotskian framework. Their study of counting
examines the different degrees of semiotic demand required for various activities.
They introduce the notion of foregrounding and backgrounding in which the
empirical sign-object referent is pushed further to the back as development
progresses, thus strengthening the links in the sign-sign plane. The authors admit that
their study concentrates on the semiotic aspect of development rather than the
conceptual but they also suggest that there may come a time when semiotic and
conceptual issues may be difficult to pursue distinctly. Semiotics does not use the
term 'concept'; rather we find Pierce talking of ideas:

It [the sign] stands for [an] object, not in all respects but in reference to an idea
"Idea" is here to be understood in the sense in which we say that one man catches
another mans idea. (Pierce in Buehler (1995) p. 99)
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When one person catches another's idea the two are obviously engaged in
communication, furthermore they will "catch each other's ideas" because of a belief
in a shared understanding. Adopting a Wittgensteinian (1974) stance one may extend
this notion to consider ideas as central to and arising from social practice. We want to
suggest that from this perspective ideas (concepts, meanings) are not separable either
from semiosis or social practice.

Building on the work of Becker and Varelas, and from within a semiotic
position, we may now present a description of meaning-making that attempts to
address the issue of the amalgamation of concept and semiotics, and that may provide
a description of the meaning-making process that will account for the diachronic
nature of experience. We have termed this perspective developmental semiotics.

The essential elements of developmental semiotics are the nature of the
interpretant, sign-sign foregrounding, and the internalisation of a network of
experiences en route to higher mental functioning. Such a perspective presents
development as a continuous process of meaning-making, beginning with making
meanings at a concrete sign-object level and progressing towards an unlimited
semiosis where meanings are made through sign-sign interaction, each sign having
the possibility of then becoming the object in another semiotic triad. Through the
action of the interpretant the intersubjective gives way to the intrasubjective and
individual higher mental functioning arises as a result of that interpretant becoming a
sign and of the relationships that sign has with other intrasubjective signs.

On the macro level developmental semiotics provides a description of
meaning. On the micro level it may provide a toolkit for the analysis of specific
meanings in specific situations. The interpretant, the space in which intra- and inter-
subjectivities meet, is the one variable in semiotic action and as such may provide
clues to meanings made in a given action. The notion of development towards sign-
sign foregrounding represents a developmental shift towards higher mental
functioning and in a specific context interpretants which represent various stages in
this shift may be evident. Semiotics provides a vocabulary, and a theoretical
framework which will enable discussion about the nature and the role of the sign in
the meaning-making process, and the implication is that there be a shift in emphasis
to the role of the sign in the analysis of meaning-making in a given mathematical
context.

As an elaboration of the developmental semiotic description consider a
possible line of development (in a single context) leading to the solution of the linear
equation 3x+2=x-4. In order to solve such an equation a student must be at a certain
level in her semiotic development (particularly as this equation is considered to be at
the 'other' side of the cognitive gap (Filloy and Rojano 1989)).

At the very start of development she began counting in groups of objects 11,
III, 11 11 etc. concretely, with a high degree of sign-object reference (as the sign
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<I> represents one object" iconically). To make a meaning for the symbols <2> and
<3> she would have had to background the concrete reference somewhat and
associate the abstracted sign <2> with her previous action of grouping l's,
particularly when it comes to make a meaning for addition and then multiplication. In
order to build a meaning for <+> she must not only perceive it as the order to count
on, or count all she must know how to use it intelligently, if she wants to background
the more concrete count all procedure (which she must do if she wants to be able to
multiply large numbers meaningfully) she must make a more complicated meaning,
and begin to use the sign <2> as an entity in its own right. More than knowing how
she must have built up a network experiences to enable her to know that <2> is an
entity in its own right.

The same is true of her later development and when she comes to meet the sign
<x> she may make a meaning for it as a generalised number, perhaps through
experiences of < [I+5=7>; alternatively she may make meaning for it as an operation
to be carried out, or even (depending on the metaphor) of a weight on a scale.
Whatever meaning she makes will be based upon her experiences of the use of the
signs <+> <=> etc. and of arithmetic, as well as the degree of sign-sign
foregrounding, but more, it must be sufficient enough to enable her to make a
meaning for <x> as an entity to be manipulated meaningfully. Thus we see the sign
as an opaque compounded entity for which "senseful" (Lins 1994) symbolic meaning
must be made.

Below we present some extracts of students solutions to the equation
7+2A=4A- II. This is an equation with a high degree of semiotic demand as solution
requires the manipulation of the unknown as well as manipulation of numbers.
Semiotically this context is complicated by the number of signs requiring
interpretation. Apart from the equation itself, the unknown, operators and numerals
are signs for which meanings must be made. In the following brief discussion we will
concentrate on the interpretants for the equation and the unknown.

Solve for A 7 + 2A = 4A 11

40=44-26
18 Z219 Answer Az"

249-70
(Student A)

It appears that student A is using a syntactic metaphor for solution - "move the
2A and -I I to the other side of the equation and change the sign". This indicates a
high level of sign-sign foregrounding for both the sign <A> and the sign <7+2A=4A-
1 l>.

4 - 399 4 0:6:
,



Solve for A 7+2A=4A-11
c.)1(

(Student B)

-1 3 I4. 15

Answer OC-)14--'

Student B attempts the same equation with a much lower degree of sign-sign
foregrounding but with still a senseful meaning. The extract indicates a use of a trial
and error method, <x> is seen as standing for a number and as a sign it does not stand
to the student as an object itself merely as the representation for <9> (another sign).

Although this trial and error meaning for the sign <7+2A=4A-11> is senseful,
this meaning will not provide the required flexibility to tackle equations with non
integer solutions (only integer solutions have been tried). Student A demonstrates
flexibility in the ability to make a meaning for the sign <equation> at two levels,
depending on the degree of semiotic demand. The equation <18=2A> is solved by
recourse to generalised arithmetic and the students network of experiences in the
process of doubling- "two times what makes 18?".

These two brief examples demonstrate two extremes of semiotic development.
Both extracts indicate that the students have made senseful meanings for the signs
through the interpretant in relation to a network of experiences, and the extract from
student A suggests further the developmental nature of those meanings. For student B
the shift to a more symbolic meaning would be essential for progression.

Implications

Developmental semiotics may offer contributions at two levels. First, at the
macro level, it provides support for a sociocultural view of mathematics and situates
the meaning making process firmly in communication by making the sign central to
its action. Second at the micro level it may offer a toolkit and vocabulary which may
prove fruitful in informing the meaning making process in specific domains.

The notion of development is central to the description presented here and,
accepting that development as prescription is problematic (Burman 1994), is an
integral part of the meaning-making process. Within this perspective it is essential
that for progression towards higher mental functioning, signs become compounded
into other signs and that senseful meanings be made for each sign. Further work in
applying a semiotic perspective to mathematical domains will need to investigate
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both the nature of senseful meanings and the types of semiotic activity that will help
generate such senseful meanings.

Research carried out from within a developmental semiotic perspective will
concentrate on the nature of the sign in specific acts of semiosis. This focuses the
need for a research methodology aimed at eliciting meanings made in those contexts.
Central to the empirical aspect of the ongoing research programme into the
application of this perspective to specific domains is the evaluation of unstructured
interview and mathematical writing as methods of data capture suitable for providing
data for semiotic analysis.

We have suggested that developmental semiotics can inform about meaning
making in specific domains and have given examples of arithmetic and algebra as
possible domains. The mathematics register consists of complex signs with a high
degree of semiotic demand and all mathematical domains may be thought of as sign
systems. Investigations into the nature of signs in any mathematical domain should,
in theory, be possible and further work would investigate some of these domains
from a semiotic perspective, to bring out specific implications for teaching and
learning within these domains.
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Some Psychological Aspects of Professional Lives of Secondary
Mathematics Teachers-

-The humiliation, The frustration, The hope

Shlomo Vinner
The Hebrew University of Jerusalem

ABSTRACT
Some teacher group discussions about problems in their professional life are
described and analysed. It is claimed that these teachers do not show a convincing
reflective ability on one hand, and on the other hand, they are both frustrated and
humiliated by the system.

Introduction and a methodological comment
A lot of research has been done about teachers. Usually, the studies focus on one
particular aspect of their professional life. It might be their mathematical
knowledge (for instance, Even, 1990), their educational philosophy (Boufi,1994),
their desire to use computers in teaching (Bottino&Furingheti, 1994), their
tendency to have problem solving in their everyday practice (Fernandes, 1994) and
so on. There are fewer studies, however, which relate to more general aspects of
mathematics teachers' professional life. One of them is Shuard&Quadling (1980).
Its title even includes part of this paper title: "some aspects of professional life."
It opened a gate to this extremely important domain. Some teachers were invited
to write reactions to some questions posed to them by the editors of the book. The
written reactions were presented to the reader with some editorial comments and
introductions. The approach of this study is similar in a way and totally different
in another way. Questions were posed to teachers about their professional life, but
this was done in group meetings and the teachers, after handing in their short
written replies, had long discussions on the issues raised in these short written
replies. Very often the discussions went beyond these issues to other important
issues of the teachers' professional life and thus reactions to questions which were
not originally posed to the teachers were obtained as well. The group meetings
were considered as a framework in which several teachers discuss and
share personal problems related to their profession. This is a modification
of the Webster's Ninth New Collegiate Dictionary description of a group therapy
and the approach is also similar. Namely: 1. Discuss your own problems and this
will make you more aware of them. 2. Listen to other people's problems. 3.
Listen to other people's reactions to your problems. All these are supposed to help
you solving your problems. The group discussions were videotaped and
transcribed. They were watched and read several times. This was a basis for an
analysis which led to two main outcomes. The first one is a set of excerpts (part
of which will be presented later on). The second is the interpretation that I suggest
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to the excerpts. As to the excerpts, one could say that they speak for themselves.
This is partly true. On the other hand one has to remember that selecting these
particular excerpts is already an interpretation of the data. But even after selecting
the excerpts, they can still speak in more than on voice. Therefore an
interpretation should be added. Of course, there is a methodological problem
involved here. This problem cannot be easily solved. It is the methodological
problem associated with many case studies and interview analysis. Interpretations
are accepted if they are convincing, but it is impossible to give criteria for being
convincing. Different people react differently to the same data and interpretation
and there is no way to overcome it.
The official name for the group discussions mentioned above was a workshop for
discussing problems in mathematics education. And if problems are mentioned
also problem solving should be mentioned. Schoenfeld (1985) speaks about four
factors involved in problem solving. Although he speaks about mathematical
problem solving it seems to me that his conceptual framework is suitable, ',aafis
mittandis, also for other problem domains. This includes also the problems
mathematics teachers have in their professional life. Therefore if we want to
analyze teachers discussions about their problems Schoenfeld's conceptual
framework can be used. The four factors which constitute Schoenfeld's conceptual
framework are: 1. Resources. 2. Heuristics. 3. Control. 4. Belief System. A
general advice which is given to the problem solver ( and this goes back to Polya,
1957): I. Identify the problem. 2. Devise a plan. When examining the
excerpts we can ask ourselves whether the teachers follow these guidelines,
whether they identify the problem correctly, what are their resources, what are
their belief systems and do they have a control mechanism? Because of space
problems I won't be able to get into a systematic discussion of all these. I will just
refer to them here and there.

Sample and questionnaire
The entire sample on which this study has been done included several teacher
groups who met and interacted in a similar way. In this study I will discuss only
one of them (N=11). An additional group, in the context of other issues, is
discussed in Vinner (1995). The range of the teaching experience in this group was
between 5 and 30 years with a mean of 15. It included 8 females. The following
questions were presented to this group in the beginning of a session. The teachers
were asked to answer these questions shortly in writing. Later on their answers
served as a trigger for a long group discussion.

Questions
1. Note 3 to 4 difficult topics or concepts in the mathematics curriculum. 2.

What makes them difficult? 3. How do you cope with these difficulties?
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Results and analysis
I. Frustration
Here is the distribution of answers according to the topics or concepts which were
mentioned in the written answers. The numbers in parenthesis indicate the number
of teachers who mentioned the topic (or concept) in their list
A) The topic: Proofs in Geometry (7)
The cause of difficulty: I. You cannot find two proof assignments which look
exactly the same. 2. Proofs need creative thinking. 3. Proofs require
accumulated knowledge. 4. The geometrical tasks require a lot of concentration.
5. The material is abstract.
The way to cope: 1. A lot of class and homework assignment. 2. Pictures and
drawings in colors. 3. 1 give up proofs and their accurate formulation and focus
on computational assignment.
B) The topic: Word problems (4)
The cause of difficulty: 1. Reading comprehension problem. 2. Difficulties in
translation from everyday language to the language of Algebra. 3. The problems
are taken from different domains, contrary to the situation of the technical
exercises. 4. The cause of difficulty is not known.
The way to cope: 1. Reading the word problem with the students while trying to
understand the mathematical relations underlying there. 2. Explaining again and
again in every possible way and giving more assignments. 3. Working gradually.
C) The topic; Trigonometric equations (4)
The cause of difficulty: 1. Too many concepts. 2. The difference between this
topic and the concepts which were studied in the past. 3. The need to know
trigonometric identities and to use them in the solution process.
The way to cope: 1. Explaining again and again. 2. A lot of exercises.
D) The topic: Derivative (4)
The cause of difficulty: I. The fear of a new topic. 2. The complexity of the
concept which is based on the concept of limit or on the concept of approximation.
3. The concept presents a new form of thought which is unfamiliar to students who
are used to think that mathematics is 2+2 = 4.
The way to cope: Frequent repetitions on the concept with the hope that 'the
infinite repetitions will do the job. 3. Pictures and drawings in colors.
E) The topic: Three dimensional geometry (2)
The cause of difficulty: 1. Lack of spatial visualization. 2. Lack of concrete
material teaching aids.
The way to cope: 1. Suitable drawings and demonstrationS in the classroom space.
F) The topic: Limit (I)
The cause of difficulty: The superficial approach to the concept and the avoidance
of a deep discussion of it.
The way to cope: I. Avoidance of dealing with the concept.
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More Topics: Radians (I); Problem with parameters (1); Vectors (I); Graphical
solutions of inequalities (1); Inequalities with absolute values (1); Exponentials
(1); Logarithms (1); Functions (I); Proofs by induction (1).
The cause of difficulty: Lack of algebraic skills (Graphical solutions of
inequalities); Forgetting (exponentials); Lack of internalization (Function); The
passage from n = k to n = k+1 (Proofs by induction)
The way to cope: Skipping it (Vectors; Logarithms; Inequalities with absolute
values); Start teaching the concept already at the junior high level (Functions);
Giving numerical examples (Proofs by induction)
The surprising fact about the above data is its diversity and the number of
marginal topics which are not expected to appear on a short list of difficult topics.
Here, the reflective ability of these teachers is questioned (This is part of the
control, in Schoenfeld's terminology) Teachers who reflect about their teaching
would have a short list of central topics which are difficult for their students.
Although the word "central" was not mentioned in my question it was expected
that, since the number of topics was limited to 3 or 4, concepts like radian or
inequalities with absolute values will not be mentioned. (There is no doubt that
these are difficult topics.) On the other hand, it would be expected that concepts
like functions, limits, or vectors will be considered as difficult topics by more than
one teacher. It would be expected that proofs in general will be mentioned and not
only proofs in geometry. It .would not be expected that the number of answers
mentioning word problems will be the same as the numberof answers mentioning
trigonometric equations (a difficult topic, but not a central one in the curriculum)
When examining the causes of the difficulties, the teachers' resources (in
Schoenfeld's temiinology) should be questioned. At the side of some good answers
(although formulated sometimes in a naive language like the concept presents a
new form of thought whith is unfamiliar to students who are used to think that
mathematics is 2+2=4") one can find useless banal answers. They are useless
because they do not give any clue which is particular to the concept in
consideration ( "the fear of a new topic"). There is no reference, whatsoever, to
any learning or cognitive theory. Either the teachers have not been exposed to
them or they think they are irrelevant to their everyday practice. Unfortunately,
too often, the only question which the everyday practice raises is how to survive.
This is expressed very clearly in Shuard and Quadling (1980, p.18) when a new
teacher says:
After a good "Team talk" the advice we were given seemed to make more sense
than all the first term of Piaget. Instead of all the talk about helping, guiding, and
caring, we were given a lecture on "us" and "them" and how to survive...
While the teachers were busy with writing answers to my questions,' the following
short dialogue took place.
Yacov: You are upsetting us? I: Why? Yacov: Because if it is difficult for the
students it implies that / do not explain it adequately
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This small talk may look insignificant on first sight, but Yacov is a teacher with
extremely -good reputation and with 25 years of teaching experience. It is hard to
believe that such a teacher believes that if a topic is difficult for the students it is
because the teacher has not explained it adequately. I suspect that there is some
irony here, an irony which is directed to one of the public opinions about
mathematics. Namely, mathematics is difficult because it is taught inadequately.
Thus, mathematics teachers are held responsible for the present situation in
mathematics education. It is something quite unpleasant to face. The teacher was,
perhaps, looking for a way to get it out of his system on one hand, and on the other
hand, looking for reassurance( from me and from his colleagues) that this is not
the case.
During the discussion that took place after that 1 asked: Why don't you simply ask
the students about their difficulties? Shoshanah: Because they will tell you
everything is difficult. have tried it many times. An entire proof is written on
the blackboard, filling it completely and I am asking: is anything unclear? And
they respond: everything.
This is also typical to the teacher - student communication in many mathematics
classes. There is no meaningful dialogue between the two. As a result of that and
the fact that mathematics education theories are not used, teachers are, very often,
left with some of the common (and not necessarily helpful) devices as explaining
again and again and assigning lot of exercises (see above). Here are some more
excerpts from the discussion about the topics.
Carmela: After many years that / haven't faced any difficulty in teaching
trigonometry 1 had some serious problems with my graders last year. As a
matter of fin -1 - a good class. Probably, the weirdness of a new stuff. This year, it
is not a problem for them anymore. I asked them: What happened to you last
year that you cried so much ? I: What was so difficult for them in your opinion?
Carmela: / think this is the well known fear of anything new...What did I do? 1
explained again and again. If in previous years I first explained A, then B and
finally C last year 1 first explained B, then C and finally A; all the possible
permutations. 1 did a lot of exercises... Why was it difficult? / do not know. I:
I-/ow do you teach it? Carmela: / start immediately with the functions, the sine, the
cosine and so on. When I realized it was difficult for them I switched id the
triangle. Then they told me: Yes, but here it is in a triangle. They had this
difficulty: / do not know why. I: Hasn't this happened to you also in the past?
Carmela: No. Nor that 1 remember. I: And how do you explain this? Carmela:
I do not know. 1 ant asking you.
Carmela is a department head at her school with 28 years of teaching experience,
extremely devoted to her students and colleagues. Yet, if you examine carefully
her above comments you discover lack of reflection and lack of resources to solve
some teaching problems. In order to make her students understand she tries
various orders of presenting the materials. It seems that one order is better than
the other but she cannot explain why. The fact was that this year she taught
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trigonometry in the functional approach. Just a simple task analysis, which is so
common in mathematics education research, tells you immediately that such an
approach would be extremely difficult for the students. Carmela realized it after
she tried it and then she regressed to the old approach - the triangle. She has taught
trigonometry in the new approach for a couple o years. It is a little bit surprising
that she did not notice the students' difficulties with this approach earlier. But it is
also quite typical to situations when teachers present to the students something
with which they are not familiar. They are so busy with their own difficulties that
they cannot notice their students' difficulties.
This part of the discussion reminded some teachers their mathematical experience
as high school students.
Gadi: / remember myself as a high school student, in my first trigonometry lesson
I got into a mental block out of which it took me an entire year to get. And I was
not a weak mathematics student. Carmela: Do you remember why? Gadi: They
blew us with seven Latin words simultaneously: trig, sine, cosine, tangent,
cotangent. secant and cosecant. Ricki: This was exactly what they did to us. Gadi:
My main problem was that I did not understand what was important and what was
unimportant. We got an infinite amount of exercises. Infinite amount of
trigonometric identities. / proved some identities. So what? I knew more or less
what they expected from me. I did more or less what I was expected. I got
reasonable marks and I understood nothing. Just nothing.

1: You said as a high school student you knew how to calculate the sine of any
given angle but the concept of sina was not clear to you?
Gadi: Mat's correct.
Note that in the last part of the discussion teachers talk to each other and not only
to me, as happened in previous excerpts. This development I considered as one of
the achievements of the workshop. Usually, teachers do not talk to each other on
this kind of issues. Also note that these particular remarks make the teachers think
about how some of their students feel when learning some mathematical topics.
There is an illumination here that, perhaps, I am confusing my students now the
same way my mathematics teachers confused me in the past. Isn't this, together
with all the above, a solid ground for at least occasional frustration? .

2. The humiliation
In a later part of the discussion the issue of in-service training was brought up.
Carmela: In in-service training I have always had the feeling that the old teachers
are treated with disrespect. Look at the kind of mathematics they teach! They
want us to emphasize understanding. But the concepts are so difficult. No student
can really understand it completely. We were willing to teach in this approach but
it simply did not work out. So, please, don't tell us that we are just "old cars" that
can run only this way.
Ricki: This attitude of disrespect we sense in all the in-service training
conkrences. The 'big bosses" sit there on the stage and broadcast: you really do
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not know mathematics. All you do is to prepare your students for the
matriculation exams.
At this point, I really think, interpretations are superfluous.

The in-service training led us to the university pre-service training. Ayalah was
arguing that her university training did not prepare her to cope with the new
mathematics curriculum. Here are some more excerpts which do not need
interpretations.
I: I think I have understood you. You are claiming that as far as the new
curriculum is concerned you haven't got the rationale, the conception, spirit and
goals. Isn't it? Ayalah: For instance, I haven't studied physics and therefore I do
not know at all what vectors are. I: Don't you? Ayalah: O.K. I saw it in linear
algebra. But there, they never drew any picture on the blackboard. I have never
seen the parallelograms with the vectors on them. This is something which is
entirely new for me. I feel that it is wrong for me to teach this stuff if my
knowledge goes only as far as solving the exercises at the end. I require from
myself to learn something which will help me to understand what this vector is.
When it is used? What exactly do they do with it? Technically I can be a
mathematics teacher without knowing physics, but I feel that I have to study it in
the future. I: Do you have any complaints against the mathematics department that
did not give you the appropriate training? Do you think that certain topics should
have been included in your B.Sc. program and have not been included there? Or
it didn't occur to you that you can criticize? Ayalah: I have no problem
criticizing... / came to the university from a school in which they do not teach 5
unit mathematics... first year university - I did not understand what it was all
about . A year and a half I was in a complete shock... All the clever guys sat in the
first line and had a dialogue with the lecturer. My criticism against the university
is that the enrollment requirements for the mathematics department are very low.
The university knows that drop out is 50%. But why not collecting a one year
tuition from so many students. And what do they care about 200 students sitting in
one lecture hall? This fact gave me the chance to run away. It is not one to one
situation; a teacher and a student. If I were in a smaller group I would have felt
some pressure. The pressure of the lecturer who knows exactly what I knowiand
what I don't, and also my own pressure to understand everything which is require
for a particular lesson. If things were like that at the university I would have come
out of it with a different type of knowledge.
This is about content knowledge. The attitude to pedagogical knowledge is
expressed in the following excerpt.
I: What about (preservice) teacher training. It has one course which is called t'
didactics course. Teachers (jiggling): ... I: Did it have any contributio, vi

daily practice? Daphna: I did not go through the teacher training program. iu.
got a teaching permit. l had to take an examination in order to get it. Di.laf .

was included in the exam materials. I got a pile of books to read. I shol ed them I



knew how to puss an exam... That's it. I: Do you remember any book from that
pile? Daphna: ... I: Just one. Daphna: No. And my marks were high, above 90.
Very often, teachers are criticized by the system (universities, parents, the
educational administration). It seems to me that the above excerpts leave no doubt
about the address to which this criticism should be forwarded.

3. The hope.
There is no universal recipe for hope. Different people might have totally
different views about it. Thus, I do not know whether my view here will be
widely acceptable or acceptable at all by other mathematics educators. I believe it
was expressed in much better way that I can think of in The Board of Education's
Handbook Suggestions for Teachers (1937), an English document quoted in
Shuard&Quadling (1980, p. 2): "The only uniformity of practice that the Board of
Education desire to see ...is that each teacher shall think for himself and work out
for himself such methods of teaching as may use his powers to the best advantage...
of his school." Teachers, very often against their own will, have become
messengers of systems with which they do not identify. These systems do not give
them enough freedom to express themselves as human beings. Teaching is a
creative profession. The educational systems should think how to encourage
teachers' creativity (without losing their control, I know). It is not a simple task .
However, the occasions in which teachers expressed satisfaction and enthusiasm
about their work were the occasions where creativity was involved. They were
related to mathematical activities, to working sheets or to a new way of presenting
a concept, all originated by the teachers. How this can be, at least partly, obtained
is a topic for another paper.
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TEACHERS' KNOWLEDGE OF PUPILS' ERRORS IN ALGEBRA

by El lam K Wanjala, Kenyatta University, Kenya,
and Anthony Orton, University of Leeds, UK.

This paper outlines part of a major study into Kenyan pupils: errors in algebra and
their teachers' strategies for dealing with those errors. Here, the nature and
selected results of an investigation into teachers' knowledge of pupils' errors are
reported. The teachers were required first to place similar algebra tasks into
expected order of difficulty, then to predict likely pupil errors, and finally to suggest
strategies for helping the pupils. The results indicate that many teachers are aware
of likely errors, but that many other teachers are lacking in essential knowledge.

Introduction

When pupils are presented with an algebra question such as:

Task 1 Simplify where possible
N 3x + 8y + x
(ii) (a - b) + b
(iii) 3a - (b + a)
(iv) 2a + 5b

do their teachers know what are the relative difficulties of the four subtasks? Indeed,
do the teachers know what the likely errors are? Can teachers accurately predict the
errors which pupils are likely to make on subtasks like "Simplify 3a - (b + a)" and do
they have strategies for dealing with the errors?

This paper is based on some of the findings of a major study carried out in
Kenya, concerning both pupils' errors in what might most simply be described as
traditional school algebra, and also with teacher strategies in identifying and
counteracting the errors. A major part of the study consisted of a detailed analysis of
the range and types of errors committed by 900 pupils from seven different secondary
schools of three different types and across three forms (i.e. 'year' groups or
standards). This kind of study has already been carried out in many countries around
the world, but it was considered necessary to collect data concerning errors committed
by Kenyan children and not to base a study of teacher awareness on data from other
countries. The teachers themselves completed a short questionnaire in three parts. In
the first part (Comparison), they were asked to place subtasks, such as those in Task
I, in order of difficulty, in the second part (Prediction) they were asked to predict
likely pupil errors in a task such as (iii) above, and in the final part (Analysis) they
were expected to identify errors and suggest remedial teaching strategies, having first
been provided with examples of pupils' erroneous solutions. It is the analysis of the
outcomes from the teacher questionnaire which provides the data for this paper.

Errors and misunderstandings generated by school pupils have been researched
and reported widely. Examples of earlier studies include those by Collis (1975),
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Kilchemann (1981), and Booth (1984). Driscoll (1982) wrote a useful account of how
research findings in the field of learning algebra might inform teachers and lead to
better understanding in pupils. Herscovics (1989) detailed what he described as
cognitive obstacles which pupils encounter in learning algebra. These are but a few
examples of the many studies which enabled Warren (1992) to suggest five major
areas of difficulty in traditional school algebra, namely the variable concept, the visual
syntax of algebra, the concatenation of algebraic expressions, the changing nature of
the equal sign and the manipulation of symbols. The knowledge which is now
available to the community of mathematics educators will not benefit the pupils,
however, unless secondary school mathematics teachers generally are aware of these
likely errors and alternative conceptions. Most teachers do not appear to read even
what for them are the most relevant research papers, or even professional journals
which might contain research articles. The most likely first source of knowledge
about pupils' learning difficulties, for most teachers, is therefore likely to be the
behaviour they observe in their pupils.

Comparison

The basis for the consideration of teacher responses in this section was the
facility levels which resulted from the pupil test data. These facility levels were
determined both by using mean score on the item, and response level, where the
response level (R) is defined as R = (PH + PL)/2 (Youngman, 1979), and where PH is
the proportion of pupils in the high-scoring group responding correctly to the task, and
PL is the corresponding proportion of pupils in the low-scoring group. The high- and
low-scoring groups consisted of pupils whose total scores on the written test fell
within the top and bottom twenty-five per cent, respectively. The decision to use two
methods was mainly because that provided a means of counter-checking the order of
difficulty. It was acknowledged that the two methods could lead either to concurrent
or contradictory results, but that either outcome would inform the study. In fact, the
results were never contradictory. A further statistic was computed, namely
discrimination (D),(D), defined as D = PH - PL (Youngman, 1979). The purpose of the
discrimination was to determine the suitability of each item as a test item. The higher
the discrimination, the better suited the item for testing.

It was realized that arranging subtasks in order of increasing difficulty would
lead to many possible responses from teachers. Hypothetically, there would be 24
possible arrangements of the subtasks of Task 1. Subsequent questions, with five and
six parts, respectively, would lead to 120 and 720 possible arrangements! It was
therefore clearly necessary to categorize responses in some way, and this
categorization was based on the degree of empathy with the actual responses of the
pupils. The category described as Strong Empathy (SE) consisted of those responses
that were considered to match closely the actual order of difficulty revealed by pupil
responses, and was generally based on the fact that the easiest were put first and the
hardest were put last. The Moderate Empathy (ME) category included responses in
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which the easiest were placed before the hardest, but which otherwise did not meet the
stricter requirements of Strong Empathy. The Weak Empathy (WE) category then
included all those responses in which the hardest were put before the easiest. Results
from two of the tasks are reported here.

The facility levels and discriminations for Task 1 (quoted at the beginning of
this paper) are shown in Table 1 a, and the frequencies of responses in the categories
of empathy are shown in Table lb. The discrimination values were all within the
desirable limits. There were only two types of response which were considered to be
good enough to be classified as SE, namely iv-i-ii-iii and i-iv-ii-iii.

Table la : Facility levels for Task 1
Item iv i ii iii
Response level 0.74 0.66 0.45 0.39
Mean score 0.81 0.75 0.45 0.36
Discrimination 0.35 0.20 0.87 0.72

Table lb : Feouencies of categories for Task 1
Degree of empathy SE ME WE NV TOTAL
Number of teachers 47 7 12 1

Percentage of teachers 70.1 10.4 17.9 1.5 100
NR denotes no response " denotes rounding

It is clear from these data that a large proportion of the teachers seemed to
acknowledge the fact that the introduction of brackets in algebraic expressions
increases the level of difficulty for the pupils. Indeed, their placing of ii before iii
indicated that these teachers perceived that the introduction of a negative sign before a
bracket compounded the difficulty that pupils experience with brackets. It is also
clear that as many as 17.9 per cent of the teachers were unaware of the difficulties
created by the introduction of brackets, let alone the negative sign before a bracket. It
would appear that this category of teachers would not have a basis for an appropriate
sequencing of teaching materials and would be limited in the degree of help they could
provide to pupils.

Task 2 Simplifr where you can:

ax a2 a +
bx a 2(a b) 2(a + b)

( i v ) a (v) a + x (vi) 1 2
b + x 3x

The facility levels and discriminations for Task 2 are shown in Table 2a, and the
frequencies of responses in the categories of empathy are shown in Table 2b. The
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discrimination values were again all within the required limits. The SE category
consisted of responses in which the first three places were filled with items from the
easiest band (i, ii and iv), in any order, and the hardest (iii) was placed last. The WE
category consisted of all the responses in which the hardest was placed before any of
the items from the easiest band. The ME category then consisted of all the other
responses.

Table 2a : Facility levels for Task 2
Item i ii iv v vi iii

Response level 0.81 0.70 0.52 0.49 0.38 0.29
Mean score 0.82 0.80 0.67 0.49 0.45 0.27
Discrimination 0.25 0.45 0.80 0.80 0.72 0.58

Table 2b : Frequencies of categories for Task 2

Degree of empathy SE ME WE NR TOTAL
Number of teachers 25 31 5 6 67
Percentage of teachers 37.3 46.3 7.5 9.0 100**

One must acknowledge first that it seems natural that 't would be more difficult
to arrange six subtasks in order of difficulty than four. Also, any comparison of results
between Tasks 1 and 2 must take into account the classifications used to define the
levels of empathy. Nevertheless, it seems that only 37.3 per cent of the teachers were
able to sequence the subtasks of Task 2 in a near enough order to reflect the learning
difficulties experienced by pupils. The teachers in this category seemed to be aware
that algebraic fractions involving expressions that contain more than one term present
more difficulties than single term fractions. They were certainly also able to perceive
the complexity of subtask iii. The largest group of teachers was the ME category. In
fact, 29 of the 31 teachers in this category placed the three easiest items in the first
three places, but placed the hardest (iii) before either or both of the middle band
subtasks (v and vi). All of the teachers in the WE category placed item iii before any
of the three easiest subtasks, indicating a poor understanding of the comparative
difficulties. Although there was fortunately only a small proportion of the teachers in
the WE category, when combined with the NR group they form a similar-sized group
to those who were weak in assessing difficulty levels in Task 1. Conclusions from the
Comparison tasks suggest that a considerable number of teachers had some
appreciation of difficulty levels, in some cases a good appreciation, but that a
worrying subgroup of nearly one fifth of the teachers had little idea.

Prediction

The analysis here was based on first determining the frequencies of the errors
which teachers had predicted, and then categorizing these responses according to their
status in terms of what the pupils did. In order to reduce the number of errors
predicted by teachers, only those with a frequency of at least 3 per cent were retained
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in the analysis. Three main categories were used for the responses, referred to here
for convenience as Coincident, Unnoticed and Hypothetical. Coincident errors were
those which teachers predicted which were indeed committed by the pupils, unnoticed
errors were those which were committed by pupils but which did not feature in the
predictions of the teachers, and hypothetical errors were those predicted by the
teachers which no pupils committed. Other categories which were used to complete
the classification were Vague responses and Nil responses. A selection of the tasks
used together with the corresponding results are now described.

Table 3 : Frequencies of predicted errors in Task I (iii
Error Number of teachers Percentage of teachers

4a - b 54 80.6

2a + b 3 4.5

4ab 3 4.5

Vague 7 10.4

Nil 1 1.5

Two errors were coincident in Task 1 (iii), namely 4a - b and 2a + b. These

two errors reflect the difficulty pupils have in relating the negative sign to the bracket,
and it is clear many teachers are aware of the problem. There.were, however, also
five unnoticed errors, namely 3ab - 3a2, -3ab - 3a2, 3ab - ba and 3 - b. The first three
of these were seemingly due to the association of removal of a bracket with
multiplication, while the last two involved lack of basic knowledge of algebraic
notation and convention. In fact, these last two were committed by 9 per cent and 5
per cent of the pupils, respectively, suggesting they are common enough errors for
teachers to need to be aware of them. Only one hypothetical error was recorded,
namely 4ab.

Table 4 : Frequencies of predicted errors in Task 1 iv
Error Number of teachers Percentage of teachers

7ab 47 70.1

7a 8 11.9

7b 7 10.4

7(a + b) 5 7.5

10ab 4 6.0

7a + b 3 4.5

2 + 5 3 4.5

Vague 3 4.5

Nil 6 9.0

The coincident errors in Task 1 (iv) were 7ab and 10ab. Indeed, earlier research
has indicated that the concatenation error 7ab is very common (see Booth, 1984).
There was only one unnoticed error, 7 + ab, which is again associated with poor
knowledge of algebraic notation and convention. Five hypothetical errors were
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predicted by the teachers, namely 7a, 7b, 7(a + b), 7a + b and 2 + 5. Some of these
were predicted by quite large proportions of the teachers, and altogether the five
responses indicate some lack of awareness of likely errors on the part of the teachers.

Table 5 : Freauencies of Dredicted errors in Task 2 (iv
Error Number of teachers Percentage of teachers

1/2 26 38.8
a 10 14.9

1/a 3 4.5
a/a2 2 3.0

1 2 3.0
Vague 6 9.0

Nil 10 14.9

Coincident errors on Task 2 (iv) were 'A, a and 1. However, although the error
1/2 was predicted more frequently than any other, it was only committed by 3 per cent
of the pupils. The most common pupil error was 'a', which was predicted by only
14.9 per cent of the teachers. There is thus the indication that many teachers are well
aware of some of the likely errors, but are not always aware of their relative
frequency. The suggestion that teachers are only aware of some of the errors is
supported by the existence of five unnoticed errors, namely -a, a/2a, 1/-a, 1/12 and 21
Two hypothetical errors were suggested by the teachers, and these were 1/a and a/a2.
Given that 1/a is the correct answer, and a/a2 is the original question, these must both
be considered strange responses which perhaps suggest either lack of understanding of
the question, or even lack of understanding of the mathematics.

Task 3 Write (3x + 2)2 without brackets.

Table 6 : Freauencies of aredicted errors in Task 3
Error Number of teachers Percentage of teachers

9x2 + 4 27 40.3
6x + 4 20 29.9
3x2+ 4 10 14.9
9x + 4 6 9.0
3x + 4 5 7.5

9x2+ 12x + 4 3 4.5
10x 2 3.0

Vague 3 4.5
Nil I 1.5

The coincident errors on Task 3 were 9x2 + 4, 6x + 4, 3x2 + 4 and 9x + 4. The
first of these was both the most commonly predicted and the most frequently
committed by the pupils. In fact, it is such a well known error that it is surprising that
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more teachers did not predict it. The error 6x + 4 was also very common.
Hypothetical errors were 9x2 + 12x + 4, 3x + 4 and 10x. Here, we find the correct
response again being included as a predicted error, which is difficult to understand.
Presumably, 3x + 4 was suggested on the basis of squaring only the 2, that is, ignoring
the brackets. There were no unnoticed errors on this task.

Analysis

In this section, teachers were provided with typical pupil questions together
with a corresponding incorrect solution. They were asked to (a) identify what the
pupils had done wrong, and (b) suggest ways of helping. An example of a question
and its corresponding incorrect solution is given as Task 4.

Task 4
If n - 246 = 762 then n - 247

Pupil solution: 763

This section of the teacher questionnaire was the most complex to analyze,
because of the relatively open nature of the tasks and the corresponding wide variety
of responses obtained. Using procedures described by Bliss et al. (1983), four
categories of response were defined, namely 'error identified', 'answer given',
`irrelevant response' and `no response'. The 'error identified' category represented
cases in which the teachers were conceptually inclined, that is they were diagnostic in
their approach and were interested in the nature of the misconceptions which led to the
response. The 'answer given' category, on the other hand, represented cases where
the teachers only seemed to be interested in the correct solutions. As regards
suggestions, again four categories were defined, namely 'pupil based', 'subject
based', 'irrelevant suggestion' and `no suggestion'. The 'pupil based' suggestions
represented cases in which teacher strategies were sensitive to the pupils' difficulties.
They often made use of relevant prior and perhaps more elementary but relevant
knowledge of the pupils. On the other hand, the 'subject based' suggestions focused
on the accuracy of the response but were insensitive to the pupils' difficulties. At this
stage it is possible to report only on the frequencies of the various categories. Table 7

shows the relative frequencies of the categories on error identification, and Table 8
shows the relative frequencies of types of suggestions.

Table 7 : Relative frequencies of categories on error identification
Classification Number of cases Relative frequency

Error identified 111 0.33

Answer given 78 0.23

Irrelevant response 89 0.27

No response 57 0.17

Total 335 1.00
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Table 8 : Relative frequencies of the types of su estions
Kind of suggestion Number of cases Relative frequency

Pupil based 24 0.07
Subject based 87 0.26
Irrelevant suggestion 104 0.31
No suggestion 120 0.36
Total 335 1.00

The indications are that in about one third of the cases the teachers were able to
identify an error, in about one quarter of the cases the teachers just gave a correct
answer, in over one quarter of the cases the teachers made irrelevant suggestions, and
in nearly one fifth of the cases the teachers were unable to give any response. Initial
consideration of the individual questions reveals that the teachers could identify errors
more easily in some situations than in others. In Task 4, errors were identified with a
relative frequency of 0.48, whereas in two other questions figures of only 0.15 and
0.19 were obtained. The suggestion here is that many teachers do not see such
questions, and indeed possibly algebra as a whole, as having to convey any meaning to
pupils. Rather, the emphasis seems to be on symbol manipulation. It seems that many
teachers need to be persuaded that the teaching emphasis should be on making algebra
as meaningful as possible to pupils.
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CHILDREN'S STRATEGIES FOR COMPARING TWO TYPES OF
RANDOM GENERATORS

Jenni Way

University of Western Sydney, Nepean.

This paper reports on one particular interview task that required children
(aged 5 to 12 years) to compare the structure of one form of random
generator to another. Their strategies can be classified into four distinct
categories which are age related. The most effective strategy, in terms of
correct solutions, involved fractional thinking. The strategies are
discussed in terms of some recent research on fractional and proportional
thinking.

Introduction
The task-based interviews reported in this paper refer to a particular task from one
component of an ongoing exploratory study of children's understanding of
probability. This 'Transfer task' was designed to see if the children were able to
relate the structure of one type of random generator to another. Although spinners
and coloured objects in containers are two random generators commonly used in
probability studies, little work has been reported on children's thoughts about the
relationship between the two. One study in progress (Truran, 1994) suggests that
children perceive the behaviour of various random generators to be quite different
even though they are mathematically the same. The 'Transfer Task' provided a
small opportunity to explore this aspect of probabilistic thinking.

The children first played a game involving the drawing of small coloured bears
from a box, which gave them experience with a numerical model random
generator. Then they played a 'Racing Car' game involving the use of four
different spinners, which gave the children experience with an area model random
generator. The 'Transfer task' required the children to mix the two games by
placing coloured bears into the box, ready to play the 'Racing Car' game. They
were asked to match the structure of three types of spinners, but only the biased
spinner with the proportions 4:2:1:1 is reported here (see diagram below). Thus,
the children were required to consider the relative proportions of the spinner's
sections and decide on numerical values for its various sized sections.

Red: Yellow: Blue: Green = 4:2:1:1
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Results

So far the data for 32 children has been analysed. Table 1 shows the number of
children of each age and the number of children that achieved correct solutions,
with the percentage of that age group in parentheses. While many of the children
came very close to a correct solution, only 18.75% of the 32 children were actually
correct. No children under the age of 9 years were correct.

Table 1: Age Group/ Number Correct

Age
(years)

Number of
children

Number with a
correct solution

5 3 0

6 4 0

7 3 0

8 5 0

9 5 1 (20%)

10 4 1 (25%)

11 5 2 (40%)

12 3 2 (66%)

The children's solutions and strategies were examined for similarities and
differences, then grouped together accordingly. Four distinct categories of
strategies became apparent; Non-comparison, Measurement, Ordering and
Fractional. Descriptions of the four strategies follow. In the examples given, C =
Child, I = Interviewer and the four colours are represented by their first letter.
Anything appearing in parentheses has been added by the interviewer to assist
interpretation.

Strategy 1: Non-comparison

This strategy, generally restricted to the youngest interviewees, lacks comparison of
the sizes of the four colour regions. All of the responses in this category included
all four colours, usually in equal amounts (typically two or three bears), but
sometimes in uncounted handfuls. Some children placed a larger number of Red
bears in the box, acknowledging the dominance of the Red portion, but not
indicating the ability to make more specific relative comparisons. Most of these
children were unable to explain their strategy in a logical way. A few children,
who at first seemed to be applying this strategy, revealed through their explanation
that they had assumed they were supposed to construct a 'fair' sample space, and
after further explanation of the task, changed their solution.
Example I - Angela (5:6 yrs)
Solution: A handful of each colour, which was about 4 or 5 bears.
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C: Handful of each coloUr - 'cause I looked at all the colours.
I: Did looking tell you how many bears to put in?
C: 3
1: Why three?
C: There's 3 corners (on each sector).

Example 2 - April (6:11 yrs)
Solution: All R 2Y 2B 2G
(At first had 2 of each colour)
1: Which car would probably win using the spinner?
C: The red one.
I: Would the red car win using your box?
C: Mm....well. (Tipped in all the Red bears.)

Strategy 2: Measurement

These responses involved using the bears as a unit of measurement to estimate the
'size' of each coloured portion on the spinner. This was typically done visually at
first, and then in a concrete demonstration when an explanation was sought by the
interviewer. The younger children tended to apply linear measurement, such as
lining up the bears around the outer curved edge of the spinner sectors, or across
the width of each sector. This resulted in numerical values for Red ranging from 3
to 10. The older children tended to think in terms of area and some seemed to be
also using some informal proportional thinking to 'scale down' the number of bears
they had to place into the box (see Example 3 below). The oldest child (10:4 yrs)
achieved a correct solution and several others were very close. Several responses
were allocated this category because on the surface they appear to fit, but they
contained hints of fractional thinking. For example, Alyssa (6:11 yrs) kept
mentioning "slices in a pie" when trying to explain her choice of numbers and
although she was referring to counting, may have been flying to describe the
eighths that were the basis of the spinner's construction. Unfortunately, these
children were unable to provide further explanation of their thinking and did not
choose to demonstrate physically. It is possible that they had some intuitive ideas
that they could not put into words, or resorted to simple measurement words, such
as 'fit', to approximate their meaning.
Example 1 - Jill (8:9 yrs)
Solution: 5R 3Y 2B 1G
C: 'Cause the Green's got the less area than the Blue has, and then the Yellow's got the less area than
the Red has, it's got the most area.
I: Why 3 Yellow?
C: It sort of seems that would fit there (showed bears laying on their backs on the spinner).

Example 2 - Allan (7:6 yrs)
Solution: 6R 2B 3Y 2G
C: I'm measuring the colours on the spinner. (Laid bears on backs shoulder to shoulder in a straight
line across each sector)

Example 3 - Anne (8:7 yrs)
Solution: 5R 3Y 2B 2G
C: Because 5 bears would be more....it would be about 10 bears on this (R sector of spinner) but I
didn't put 10 because there wouldn't be any room for the others (in the box). 2G would go there (on
spinner) and 3 of Y fits there - I sought of guessed how many.
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Strategy 3: Ordering

In this strategy the children typically assigned a number to the Red portion, then
assigned the next biggest portion (Yellow) one less bear, then assigned either the
Blue or Green the next two numbers in the descending sequence (eg. 4, 3, 2, 1).
This was despite the fact that the Blue and Green sectors were the same size. Some
children acknowledged this by assigning the same number of bears to both, while
others showed indecision about this equality. The desire to follow the descending
pattern seemed to override the visual message of equal area. Some children began
by assigning one bear to the smallest sector, then used an ascending-by-ones
sequence. One child assigned the largest sector (Red) 1, then ranked the other
sectors 2, 3 and 4 to indicate their decreasing size. While none of these responses
produced correct proportions, some came very close, for example: 3R 2Y I B 1G
or 4R 3Y 2B 2G.
Example I Aaron (11 yrs)
Solution: All R 4Y 3B 2G
C: Because that (Red) was half, that has the biggest chance so I put them all in, Yellow is the next
biggest so I put 4 in to make it have another chance, I put 3 or 2 of the Blue and Green 'cause they're
about the same and it gives them less of a chance than the R and the Y.

Example 2 Arthur (10 yrs)
Solution: 6R 5Y 3B 4G
C: I think Blue and Green are a bit the same or Green's a little bit bigger (took out a Blue). The Red
was the biggest, the Yellow the second biggest, the Green a little bit fatter than Blue.
I: Why: 6 Red?
C: Don't know.

Example 3 Alison (10:6 yrs)
Solution: 3R 2Y 1B IG .
C: Red is the most, them two are the same and Yellow is the second most, so I just gave 3 to the
highest and 2 to that one (Y), and I to those two because they're the same.

Strategy 4: Fractional

The children applying this strategy used fractional concepts in some way to
determine the number of bears to put in the box. They clearly considered the
relative sizes of the sectors in a numerical way and were concerned with finding
precise solutions rather than estimations. Most responses of this type were
numerically correct. Within this category a number of approaches were evident,
depending on what base unit was selected for halving or doubling, thus beginning
with the largest sector (Red), the middle-sized sector (Yellow) or one of the
smallest (Blue or Green). Four children based their reasoning on a value for the
whole circle and two of these worked with equivalent fractions.
Example 1 Amie (9:7 yrs)
Solution: 4R 2Y I B IG
C: Well I worked out that Red is half the circle and I worked out that Yellow equals 2 and Red must
equal to 4 'cause it's twice the size of this, and I knew that Green and Blue were I because it's half
the size of this (Yellow) which is 2 bears.
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Example 2 - James. (12:7 yrs)
Solution: 4R 2Y IB IG
C: Made a number for the spinner and halved it for Red, made that (Y) quarter so it's 2.
I: What number did you make the spinner?
C: 8
I: Why?
C: It's even.

Example 3 Jack (11:8 yrs)
Solution: 5R 21:2Y 11.4B 11,4G
C: Five Red...(Long thinking time)... I'm going to have to chop some in half (meaning the bears). 5
Red make up a half, 2112 for Yellow, I 1 4 fur Blue and Green.
I: If you changed the number of Red could you work it out so you could actually put the bears in the
box?
C: (Pause) Probably could. (Obviously reluctant)
1: Why 5 Red then?
C: Scaling down from um, make it 10 bears to go in (indicated total circle), so half is 5.

Example 4 Justin (9:6 yrs)
Solution: 4R 2Y IB IG
C: I've divided into eighths. I bear demonstrates 1/8, Y is 2 because it's 1/4, and 2/8 makes 1/4. Half
is the same 1/2 of 8/8 which would be 4, so I've put in 4 (R).

Table 2 gives the number of children in each age group who used each type of
strategy and shows the number who achieved a correct solution. The eleven-year-
old in the non-comparison column had difficulty in understanding the task and
changed his answer a few times. Although there is substantial overlap between age
groups, it can be seen that the type of strategy used is related to the age of the child.
This suggests a developmental sequence of understanding.

Table 2: Age Group/ Strategy / Correct Solution

Age Non-
comparison

Strategy

Measurement
Strategy

Ordering
Strategy

Fractional
Strategy

Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect

0 3

6 0 2 0 2

7 0 3

8 0 4 0 I

9 0 I 0 2 2 0
10 1 0 0 2 0 I

11 0 1 0 2 2 0
I2 2 1

Total 6 11 7 8
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Discussion
One aspect of mathematical thinking that is crucial to development of a mature
understanding of basic probability is that of fraction, ratio and proportion. There
has been some debate over what age this type of thinking becomes functional and
also over what types of research tasks best access this thinking (eg. Davies, 1965;
Chapman, 1975; Hoemann and Ross, 1971; Yost, Seigel & Andrews, 1962). Piaget
and Inhelder (1975) considered the concept of proportion to be a feature of Formal
Operational thought, achieved at a time when children or adolescents are able to
deal logically with abstract relations. The results from the 'Transfer Task' support
the developmental idea, with only the older children applying fractional thinking
and achieving precise solutions. However, the nine and ten years olds would not
usually be classified as formal operators.

The fact that the structure of the spinner used in the 'Transfer task' can be easily
described in terms of halves must have influenced the thinking of the children
employing the Fractional strategies. Some of the children, particularly the younger
ones, would probably have found a more complex spinner structure much harder to
work with. The significance of the perception of 'half for children making
proportional judgements has been highlighted by some recent studies, such as
Spinillo (1995) and Wantanabe (1995).

The recent work of two researchers provides two interesting viewpoints from
which to examine the 'Transfer task' responses. Firstly, the work of Confrey
(1995) focuses on 'splitting' as basis for developing number operations in contrast
to 'counting' as a basis for number operations. Splitting structures, such as halving
and doubling, involve one as the origin, lead to multiplication and division as the
key operations and use ratio as the unit. Counting structures have zero as the
origin, addition and subtraction as the key operations (subsequently multiplication
as repeated addition and division as repeated subtraction) and the basic unit is one
(Confrey, 1995. p.7). The Measurement Strategy responses are clearly based on
counting, using one (bear) as the unit, with no involvement of fraction or ratio.
The Fractional Strategy responses clearly illustrate halving and doubling structures
as a basis for reasoning and some explicitly use a fraction as a unit. The Ordering
Strategy does not really fit into either approach, because although a counting
sequence is a feature of the children's thinking, the numbers are used as a ranking
system rather than applying one as a unit.

Wantanabe's (1995a & 1995b) work has been primarily concerned with the
relationship between a child's coordination of units and the understanding of simple
fractions. While the coordination of units has typically been examined in terms of
whole numbers, the understanding of fractions can also involve the coordination of
two different units. "For example, 3/4 is a collection of three units of 1/4 of one
unit" (Wantanabe, 1995b, p161). A liberal interpretation of the idea of the
coordination of units allows one to view the 'Transfer Task' in a new light. The
task essentially requires the children to translate the non-numerical (spatial) units of
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the spinner into the unit-of-one (bear) model. Using this loose definition, each of
the four strategy categories portrays a different method of coordinating these two
sets of units. The 'Fractional Strategy' provides the most interesting (and perhaps
most valid) application of the coordination of units idea. The children's responses
can be sorted into sub-categories according to which sector of the spinner they
chose as the spatial unit. Most of the children seemed to be able to coordinate the
two set of units well and so reached a correct solution. For example, two children
chose to make the smallest sector (B and G) their unit and allocated it one bear.
Using visual comparison of the other sectors to the unit sector they determined the
operations to be used on the bear unit to find numerical values for these sectors.
One child used doubling and the other used multiplication.

One of four children who saw the spinner as a model for one whole allocated eight
bears to the whole then used eighths to determine the numerical values for the
sectors (See Fractional Example 4 above). This was perhaps the only child to fully
coordinate the two units (of lbear and 1/8 of one circle).

Conclusion
In the 'Transfer Task' most children were able to make sensible estimations which
may allow them to make appropriate probability judgements when using the items
as random generators in situations where the ratios were not very close. In other
words, their estimations would probably not be accurate enough to distinguish
between ratios that were very similar, such as only a one eighth difference between
spinners or a one bear difference between boxes. The mathematical reasoning
applied by the children using a Fractional Strategy suggests that these children
might be able to make fairly accurate probability judgements through comparing
proportions, though some might have difficulty working with ratios other than
halves and quarters. The information needed to test these conjectures can be
obtained from future analysis of the other tasks used in the broader study. To
obtain a numerically correct solution to the task the children had to construct a
fairly sophisticated system of coordinating the systems of units presented by the two
random generators.

Although the 'Transfer Task' was a minor component of an exploratory study it
exposes the potential of such tasks for revealing the mathematical thinking that
children need to be developed if they are to move beyond intuitive understanding
and inaccurate estimations when working with the fractions, ratios and proportions
required for the numerical level of understanding of probability.

The findings raise a number of questions, the answers to which could be useful for
informing teaching practice. If children as young as 6 years are using a
Measurement Strategy and children as old as 10 years are still using a Measurement
strategy, what teaching/learning could take place to move the children on to a more
accurate strategy? Can the Measurement Strategy be used as a basis for developing
proportional thinking? If the strategies are age related and hence developmental in
nature, why does the Ordering Strategy show no relationship to either the
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Measurement or Fractional Strategies? If the Measurement strategy is based on
counting structures and the Fractional strategy is based on 'splitting' structures,
how is the shift made from one to the other? Are these strategies peculiar to this
particular task or would they be induced by other similar tasks?
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TEACHING TO CREATE DISCUSSION AS MATHEMATICAL
ARGUMENTATION'

Terry Wood

Purdue University

Considerable evidence exists as to the pivotal role of discussion in students'
development of mathematical understanding and teachers' ways of creating forms of
interaction that allow for individual children's reasoning. This paper draws on
classroom research to address a more crucial aspect of teaching; the enablement of
situations disagreement or confusion among students. The resolution of this not only
provokes reflective thinking but resembles processes of mathematical argumentation.
Little is known about these interactions, and yet they are central to teaching from a
Piagetian constructivist framework. Drawing on analysis of 50 lessons, such
discussions are examined. The results reveal the intricate ways the teacher sustains
the interaction to allow children's reasoning to prevail, while restricting her own
instructive contributions, which enables children to progress themselves in their
mathematical thinking.

How pupils come to learn mathematics in school classrooms is a serious
question and one which is being attended to by educators and researchers alike.
Several, such as Confrey (1994) have examined constructivist theories to offer insights
for learning mathematics. Still, even though widespread interest exists in
constructivist perspectives, there is not clear agreement as to the meaning of
'constructivism'. This situation is further complicated when attempts are made to
bring theory to the practice of schooling. In fact, as Newman, Griffin, and Cole (1989)
found, theoretical principles previously successful in examining learning in
experimental settings do not necessarily transfer easily to school situations. These
difficulties are seen to be principally due to a lack of a clear connection between
theoretical constructs developed in experimental settings and their application in the
more complex educational settings which have somewhat competing goals.

Nonetheless, a Piagetian constructivist theory continues to attract many teachers
who hold an interest in child-centered approaches to learning. Yet, a child-oriented
philosophy is not enough, and teachers need to develop an understanding of, and to
some extent accept, those constructivist tenets that distinguish Piaget's theory froin
others. Once understood, it is then possible for teachers to transform these tenets and
to generate a distinct form of practice which extends beyond a superficial form of
implementation.

This process involves a serious shift in the roles for the teacher and students
which includes a renegotiation of the rights and responsibilities which underlie the
nature of the interaction that evolves. This change is most clearly seen in situations

The research reported in this paper was supported by the National Science Foundation under grant RED 9254939. All
opinions are those of the author.
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involving class discussion which center on children offering their thinking and
reasoning about mathematical problems. At the most simplistic level, these are
settings in which the teacher's role is one of allowing individual children's
mathematical thinking and reasoning to come to the fore, while limiting their own
instructive contributions.

Yet, a more complex aspect of these discussions are those instances of
disagreement or confusion which arise from the diversity in ideas generated by pupils'
thinking. Ideally, these are situations in which children, as a group, are provided the
opportunity to resolve their differences. Moreover, to do so, children are seen to
engage in a process of resolution which resembles mathematical argumentation. This
consists of interactions between the child, as the explainer, and the others as listeners,
and involves processes of explaining, challenging, justifying; continuing until
eventually resolution occurs. This process is regarded as a fundamental activity of
and central to the discipline of mathematics (Devlin, 1994).

However, in reality discussion involving young children in productive
argumentation is one of the most challenging and complex for teachers to develop.
This is largely due to the fact that success of such interaction depends on teachers
developing three essential aspects; 1) children's personal comfort in engaging in
public discourse in which disagreements arise, 2) creating an active participatory role
for children as listeners, 3) limiting their own contributions while enabling children
progress in their thinking. Therefore, it is not surprising to find that most discussions
in which mathematical argumentation occurs simply consists of an exchange between
the student and teacher, while the remaining children assume the traditional role of
passive listeners.

The purpose of this paper, therefore, is to examine the processes of teaching
which underlie those discussions in which students engage in the resolution of
disagreement or confusion in their mathematical thinking. The paper is directed at
two ends; to describe what it is a teacher does during these events to sustain students
in the processes of mathematical argumentation, and, to lay bare the manner in which
the social processes that underlie this form of interaction are constituted. In order to
exemplify these processes, illustrations are drawn from the classroom lessons of one
teacher.

First, classroom episodes are presented to illustrate the teacher's role. The
particular episodes characterize ways in which the teacher makes use of situations in
which disagreements arise and/or students experience confusion in their thinking. The
examples reveal the intricate process by which the teacher maintains the interactive
framework which sustains children in their respective roles as explainer and 'active
listener'. It is in these situations, which children bring their reasoning to the forefront
and contribute in the process of mathematical argumentation that allows them to
progress themselves in their thinking.

Next, the process is traced by which the teacher establishes the norms that
underlie the interaction. This process occurs during the beginning weeks of the school
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year and illustrates the sensitive manner in which the teacher establishes with the
children the distinctive norms which clarify their roles during class discussion.
Concurrent with these analyses, insights into the teacher's perceived roles for her
students and herself are revealed through comments made during a series of
interviews. The end result is to provide insight into the ways in which the teacher has
created a social context which is essential to support her recasting of constructivist
theory into practice.

THEORETICAL ORIENTATION AND BRIEF BACKGROUND

The class presented is part of a research and development project which began
with a constructivist approach to learning influenced by the theories of Piaget and
Radical Constructivism as coined by von Glasersfeld (Wood, Cobb, Yackel & Dillon,
1993). The aspect of these theories of importance is not universal stages of
development, but rather the fundamental contention that children make interpretative
constructions and reconstructions in their thinking as they reflect on their activity and
that of others. Further, that teaching consists of enabling students to construct
personal meaning for mathematics, rather than conveying 'ready made knowledge'.

This theoretical orientation formed the basis for the development of the
instructional activities and the social arrangements used in the classroom as well as
the analysis of children's learning. Further, this constructivist position was the
essence of the professional development sessions conducted with approximately 20
teachers which the teacher under consideration partook. As a consequence, the value
the teacher places on children and their thinking and her attempts to keep this the
focus of her teaching is key to understanding the functioning of the class.

Therefore, with this in mind, an investigation of the social processes and the
interaction relies on a theoretical orientation drawn from social psychology and
sociology found in the work of interactionists such as Blumer (1969) and Bauersfeld,
Krummheuer, and Voigt (c.f., Cobb & Bauersfeld, 1995). From this perspective, the
meaning an individual holds for mathematics is linked to the context in which their
actions arise. Teachers and students are seen to mutually establish mathematical
interpretations and understandings that form the basis for their communication about
mathematics. This process of mutual orienting is thought to influence subjective
construction and to also reflect the manner in which common meanings essential for
communication are established by the participants. Because it is assumed that the
nature of the interaction influences constructive processes which occur in the minds of
children, this investigation is not a look at learning as in the qualitative study of Wood
(1995) or the quantitative analysis of Wood and Sellers (in press). The intent, instead,
is to analyze the nature of the interaction and the teacher's activity within this context.

METHOD, DATA RESOURCE, AND ANALYSIS

The methodology used in the analysis follows those well-established by the
interpretist research tradition and is from a qualitative research paradigm. In this case,
analysis consists of both participant observer in the classroom and a detached
researcher examining videotape records.
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The analysis of teaching is situated in a data resource which consists of 50
videotaped lessons collected over a period of one and a half years. These mathematics
lessons are approximately 45 minutes in length, consist of pairs of children working
together to solve problematic tasks, followed by class discussions of their solutions.
This data is part of a larger set of data (250 lessons) collected in several other
classrooms for the purpose of analyzing teaching as related to children's mathematical
learning. Each lesson is logged for analysis. These logs represent detailed records of
the lesson. That is, they capture the events and discourse that occurred during the
lesson to allow for the initial line-by-line analysis of the data.

The analysis consisted of examining the structure or form of each lesson.
Commonalties were derived in order to identify the consistent and reliable structure or
'typical' lesson. Next, the nature of the interaction for each class discussion was
further analyzed using analytic procedures derived from Erickson (1986). This was
first accomplished by using a coding scheme developed for the analysis.

The coding categories were grounded in the results from previous analyses of
the classroom mentioned in Wood et. al, (1993). Categories were developed to
analyze the teachers' discourse with regard to: the norm statements made for students'
participation in the discussion, and, the questions and statements made during the
discussions. Through a process of toing and froing between analysis of the empirical
data and discussion as a research team the categories used in coding the data in the
line-by-line analysis were altered and refined.

These were further substantiated by examining studies found in the long
tradition of psychological research from an experimental paradigm on the cognitive,
affective, and motivational aspects involved in student learning in which the goals
involved conceptual understanding. Further, the work of those such as Ain ley (1988)
on teacher questioning in class discussions, and processes involved in argumentation
as in Antaki (1994) were taken into consideration in refining the categories.

Although the coding scheme took nearly three months to develop, it helped to
avoid the problem of being "buried in data" and allowed us to move through the
videotapes of the lessons quickly and effectively. From this analysis, interaction
patterns were identified which represented the consistent reliable forms of social
interaction that occurred during the class discussions. These forms of interaction were
further analyzed using microanalytic interpretive procedures following Voigt (1990).

For the purpose of this paper, the lessons selected from this analysis were of
two origins. One set of lessons consisted of those episodes in which disagreement
and/or confusion arose and occurred during the second half of the school year. These
were used in the analysis of teacher's discourse that occurred in the discussions in
which mathematical argumentation occurred. The other set consisted of the lessons
that occurred in the first four weeks of school and twice monthly thereafter. These

2. I am deeply grateful to Tammy Turner-Vorbeck and William Walker III who painstakingly worked with me to develop
the coding categories and collaborated in the analysis of the data.
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were used to identified the manner in which the teacher initiated and established the
norms that underlie the interaction that occurs during disagreements.

NATURE OF TEACHING

Limitations of space do not allow for the presentation of dialogue from episodes
used to exemplify the process by which the teacher maintains the discussion such that
it emerges as a form of mathematical argumentation. Space limitations also do not
allow the presentation of illustrations of the teacher's discourse as she sustained
children in their attempts to participate.

The results from the analysis of the discussion reveal one feature of teaching is
the high priority the teacher places on the children, themselves, providing reasons for
their personal thinking. It is not enough in this class for pupils to just describe their
thinking, instead they must be prepared to answer questions which might arise from
the others about their reasoning. The results reveal the intricate manner by which the
teacher handles the tension between questioning which enables children to give
reasons, and yet is not perceived as taking precedence over their thinking.

However, what distinguishes this teaching from all other forms of instruction is
the central importance placed on the role of the listeners as active participants in the
discussion by the teacher. It is through the listeners' questioning of explanations that
challenges arise. Additionally, the manner by which the teacher sustains the
interaction until children reach a resolution reveals not only a form of mathematical
argumentation, but the delicate balance of questioning the teacher uses to accomplish
this.

ESTABLISHING NORMS

The manner in which the teacher initiated with her students the norms that
would support situations in which the children would resolve their disagreements for
themselves was revealed in the discussion on the first day of school. The teacher's
sensitivity to the inherent difficulties that might arise for the children during instances
of disagreement are apparent. During this discussion, the teacher addresses an issue
which often is not distinguished by young children. That is, the difference between
the meaning of a disagreement that is personal and one which arises from differences
in ways of thinking mathematically.

In the weeks that followed, as the teacher interacted with the children, she
intentionally replicated the manner in which she expected them to participate during
discussion. When the children were explaining, she frequently asked questions which
required pupils to provide reasons for their thinking. Initially, the reasons given by
the children were vague or related to their physical actions. Over time, children began
to provide_ reasons that included mathematical logic or inferencing.

Interestingly, the teacher's normative comments during this time were most
frequently addressed to the children as listeners. She consistently emphasized their
responsibilities during the discussion. This was encapsulated in the key words 'active
listener'; the meaning of which also changed in degree over time. Initially, it simply
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meant 'listen and pay attention', but it quickly evolved through several negotiations to
mean something far more complex; "listen, see if your way is the same or different. If
different, decide whether you agree or not. If you disagree, tell why you do." This
negotiated responsibility of the listener was crucial to the formulation of the ways in
which disagreements were resolved. It provided the avenue for students to challenge
one another's thinking, for the explainer to offer justification and in some cases proof
for their reasoning, and for listeners to respond, continuing until the class determined
the disagreement or confusion was resolved to their satisfaction. As might be
expected, this did not always occur during a single lesson, and conceptual
understanding of those aspects of mathematics children found difficult continued to
arise as a topic for discussion. As the children continued to participate these
negotiated meanings became the common ground from which the class was able to
progress their mathematical thinking. Thus, this way of teaching not only
accommodates individual learning, but is reflective of Dewey's pedagogical concern
for community and students' participation in the process of the negotiation of
'collectively-held' knowledge.

At first blush the events described in this paper seem to be about teaching
mathematics in a class filled with small children. But at another level, it is about fully
realizing the importance of the teacher in creating highly complex networks of social
norms which are essential to the nature of the interaction, the form of which ultimately
determines how and what mathematics is learned in school.
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